以深度建立线段树,线段树父亲节点向儿子节点连边,然后用线段树合并可以得到任何一个点子树的线段树,只需向对应节点的线段树中的$O(\log n)$个点连边即可。为了保证连边关系不发生混乱,线段树需要进行可持久化。

这样建图,点数和边数都是$O(n\log n)$级别的,再求出强连通分量,用排列组合求出答案即可。

#pragma comment(linker, "/STACK:102400000,102400000")
#include<cstdio>
#include<cstdlib>
const int N=100010,M=4000000,E=6000000;
int Case,n,i,x,y,f[M],d[N],root[N],fin[N],l[M],r[M],tot;
int gt[N],nxtt[N],vt[N],edt;
int ga[N],nxta[N],va[N],la[N],ra[N],eda;
int g[2][M],v[2][E],nxt[2][E],ed;
int q[M],t,vis[M],cnt[M];
long long ans;
void add(int x,int y){
vt[++edt]=y;
nxtt[edt]=gt[x];
gt[x]=edt;
}
void addask(int x,int y,int l,int r){
va[++eda]=y;
la[eda]=l;
ra[eda]=r<n?r:n;
nxta[eda]=ga[x];
ga[x]=eda;
}
void addedge(int x,int y){
if(!y)return;
v[0][++ed]=y;nxt[0][ed]=g[0][x];g[0][x]=ed;
v[1][ed]=x;nxt[1][ed]=g[1][y];g[1][y]=ed;
}
int merge(int x,int y,int a,int b){
if(!x)return y;
if(!y)return x;
int z=++tot;
if(a==b){
addedge(z,x);
addedge(z,y);
return z;
}
int mid=(a+b)>>1;
addedge(z,l[z]=merge(l[x],l[y],a,mid));
addedge(z,r[z]=merge(r[x],r[y],mid+1,b));
return z;
}
int build(int a,int b,int c){
int x=++tot;
if(a==b)return x;
int mid=(a+b)>>1;
if(c<=mid)addedge(x,l[x]=build(a,mid,c));else addedge(x,r[x]=build(mid+1,b,c));
return x;
}
void ask(int x,int a,int b,int c,int d,int p){
if(!x)return;
if(c<=a&&b<=d){
addedge(p,x);
return;
}
int mid=(a+b)>>1;
if(c<=mid&&l[x])ask(l[x],a,mid,c,d,p);
if(d>mid&&r[x])ask(r[x],mid+1,b,c,d,p);
}
void dfs(int x){
for(int i=gt[x];i;i=nxtt[i]){
dfs(vt[i]);
root[x]=merge(root[x],root[vt[i]],1,n);
}
for(int i=ga[x];i;i=nxta[i])ask(root[x],1,n,la[i],ra[i],va[i]);
}
void dfs1(int x){
vis[x]=1;
for(int i=g[0][x];i;i=nxt[0][i])if(!vis[v[0][i]])dfs1(v[0][i]);
q[++t]=x;
}
void dfs2(int x,int y){
vis[x]=0,f[x]=y;
for(int i=g[1][x];i;i=nxt[1][i])if(vis[v[1][i]])dfs2(v[1][i],y);
}
int main(){
scanf("%d",&Case);
while(Case--){
scanf("%d",&n);
for(i=2;i<=n;i++)scanf("%d",&f[i]),add(f[i],i);
for(i=1;i<=n;i++){
d[i]=d[f[i]]+1;
root[i]=build(1,n,d[i]);
fin[i]=tot;
}
for(i=1;i<=n;i++)scanf("%d%d",&x,&y),addask(x,fin[i],d[x],d[x]+y);
dfs(1);
for(i=1;i<=tot;i++)if(!vis[i])dfs1(i);
for(i=tot;i;i--)if(vis[q[i]])dfs2(q[i],q[i]);
for(i=1;i<=n;i++)cnt[f[fin[i]]]++;
for(i=1;i<=tot;i++)if(cnt[i])ans+=1LL*cnt[i]*(cnt[i]-1)/2;
printf("%I64d\n",ans);
for(i=1;i<=n;i++)gt[i]=ga[i]=f[i]=0;
for(i=1;i<=tot;i++){
l[i]=r[i]=vis[i]=cnt[i]=0;
g[0][i]=g[1][i]=0;
}
ans=tot=edt=eda=ed=t=0;
}
return 0;
}

  

HDU5420 : Victor and Proposition的更多相关文章

  1. HDU 5420 Victor and Proposition

    Victor and Proposition Time Limit: 6000ms Memory Limit: 524288KB This problem will be judged on HDU. ...

  2. BestCoder Round #52 (div.1)

    这周六BC和CF又差点打架,精力不够啊...结果打BC没起来,就看了一眼题跑了...今天早上补补吧,(因为今天晚上还要打UER= =) 先放官方题解: 1000 Victor and Machine ...

  3. CF460D Little Victor and Set (找规律)

    D - Little Victor and Set Codeforces Round #262 (Div. 2) D D. Little Victor and Set time limit per t ...

  4. ACM: HDU 5418 Victor and World - Floyd算法+dp状态压缩

    HDU 5418 Victor and World Time Limit:2000MS     Memory Limit:131072KB     64bit IO Format:%I64d & ...

  5. HDU 5417 Victor and Machine

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5417 Problem Description Victor has a machine. When t ...

  6. Victor 串口 VCL 控件 - 简单实用, 功能强大的 C++ Builder 串口控件!

    源:Victor 串口 VCL 控件 - 简单实用, 功能强大的 C++ Builder 串口控件! 2014年02月06日发布控件的重要更新版本: Victor 串口控件 1.5.0.2 版本 (包 ...

  7. Victor and World(spfa+状态压缩dp)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=5418 Victor and World Time Limit: 4000/2000 MS (Java/ ...

  8. Codeforces 460D Little Victor and Set(看题解)

    Little Victor and Set 其他都很好求, 只有k == 3的时候很难受.. 我们找到第一个不大于l的 t, 答案为 l, 3 * t, (3 * t) ^ l 感觉好像是对的, 感觉 ...

  9. 【HDU5421】Victor and String(回文树)

    [HDU5421]Victor and String(回文树) 题面 Vjudge 大意: 你需要支持以下操作: 动态在前端插入一个字符 动态在后端插入一个字符 回答当前本质不同的回文串个数 回答当前 ...

随机推荐

  1. 什么是HTTP协议

    什么是Http协议Http协议即超文本传送协议 (HTTP-Hypertext transfer protocol) .它定义了浏览器(即万维网客户进程)怎样向万维网服务器请求万维网文档,以及服务器怎 ...

  2. Codeforces 932 E. Team Work(组合数学)

    http://codeforces.com/contest/932/problem/E 题意:   可以看做 有n种小球,每种小球有无限个,先从中选出x种,再在这x种小球中任选k个小球的方案数 选出的 ...

  3. python学习笔记6--mockserver

    一.mockserver的应用 有时候测试我们需要调用一些三方接口或者未开发完成的接口,完成我们的业务流程测试,但是这时候可能我们只知道接口返回值,接口并没有完全开发完成或可以让我们任意调用,这时候就 ...

  4. bug处理

    当提示405 method not allowed 时候,路由可能有问题,看看路由是get/post 是否合格

  5. 第9月第30天 MVP

    1. import UIKit struct Person { // Model let firstName: String let lastName: String } protocol Greet ...

  6. 数据结构笔记之跳表(SkipList)

    一.跳表简述 跳表可以看做是一个带有索引的链表,在介绍跳表之前先看一下一个普通的链表,假如当前维护了一个有序的链表: 现在要在这个链表中查找128,因为事先不知道链表中数值的分布情况,我们只能从前到后 ...

  7. TCP/UDP区别&&心跳包机制【转】

    转自:https://www.jianshu.com/p/6d93a3c21c34 UDP:用户数据报协议:主要用在实时性要求比较高的以及对质量相对较弱的地方.但是面对现在高质量的线路不会容易丢包,除 ...

  8. urb传输的代码分析【转】

    转自:http://blog.csdn.net/zkami/article/details/2503829 urb传输的代码分析 如需引用,请注明出处blog.csdn.net/zkami 作者Zhe ...

  9. git学习——Git 基础要点【转】

    转自:http://blog.csdn.net/zeroboundary/article/details/10549555 简单地说,Git 究竟是怎样的一个系统呢?请注意,接下来的内容非常重要,若是 ...

  10. python运行execjs解密js

    [转]http://www.knowsky.com/1041161.html python 记一次计算qzonetoken经历 之前用python写了个发表说说的爬虫,但最近发现在post数据时返回不 ...