[JSOI2015]最小表示
题目大意:
尽可能多地去掉一个有向无环图上的边,使得图的连通性不变。
思路:
拓扑排序,然后倒序求出每个结点到出度为$0$的点的距离$d$,再倒序遍历每一个点$x$,以$d$为关键字对其出边降序排序,尝试加入每一条边,若加边之前两点已经连通,则说明这条边可以删去。可以用bitset维护图的连通性,注意原图是有向图,因此不能用并查集维护。
#include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<bitset>
#include<algorithm>
#include<functional>
inline int getint() {
char ch;
while(!isdigit(ch=getchar()));
int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int V=;
std::vector<int> e[V];
inline void add_edge(const int u,const int v) {
e[u].push_back(v);
}
int n;
int in[V]={},top[V]={};
inline void Kahn() {
std::queue<int> q;
for(int i=;i<=n;i++) {
if(!in[i]) q.push(i);
}
int cnt=;
while(!q.empty()) {
int x=q.front();
q.pop();
top[x]=++cnt;
for(unsigned i=;i<e[x].size();i++) {
int &y=e[x][i];
if(!--in[y]) {
q.push(y);
}
}
}
}
struct Vertex {
int top,id;
bool operator > (const Vertex &another) const {
return top>another.top;
}
};
Vertex v[V];
int dis[V]={};
int ans=;
inline bool cmp(const int x,const int y) {
return dis[x]>dis[y];
}
inline void DP() {
for(int i=;i<n;i++) {
v[i]=(Vertex){top[i+],i+};
}
std::sort(&v[],&v[n],std::greater<Vertex>());
for(int i=;i<n;i++) {
int &x=v[i].id;
for(unsigned j=;j<e[x].size();j++) {
int &y=e[x][j];
dis[x]=std::max(dis[x],dis[y]+);
}
}
}
std::bitset<V> bit[V];
inline void cut() {
for(int i=;i<n;i++) {
int &x=v[i].id;
bit[x].set(x);
std::sort(e[x].begin(),e[x].end(),cmp);
for(unsigned j=;j<e[x].size();j++) {
int &y=e[x][j];
if(bit[x][y]) ans++;
bit[x]|=bit[y];
}
}
}
int main() {
n=getint();
for(int m=getint();m;m--) {
int u=getint(),v=getint();
add_edge(u,v);
in[v]++;
}
Kahn();
DP();
cut();
printf("%d\n",ans);
return ;
}
[JSOI2015]最小表示的更多相关文章
- 4484: [Jsoi2015]最小表示(拓扑序+bitset维护连通性)
4484: [Jsoi2015]最小表示 题目链接 题解: bitset的题感觉都好巧妙啊QAQ. 因为题目中给出的是一个DAG,如果\(u->v\)这条边可以删去,等价于还存在一个更长的路径可 ...
- BZOJ4484: [Jsoi2015]最小表示(拓扑排序乱搞+bitset)
Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 348 Solved: 172[Submit][Status][Discuss] Descriptio ...
- bzoj 4484 [Jsoi2015]最小表示——bitset
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4484 每个点上存一下它到每个点的连通性.用 bitset 的话空间就是 \( \frac{n ...
- [BZOJ4484][JSOI2015]最小表示[拓扑排序+bitset]
题意 给你一个 \(n\) 个点 \(m\) 条边的 \(\rm DAG\) ,询问最多能够删除多少条边,使得图的连通性不变 \(n\leq 3\times 10^4\ ,m\leq 10^5\) . ...
- bzoj4484[JSOI2015]最小表示
题意 给出一张DAG,要求删除尽量多的边使得连通性不变.(即:若删边前u到v有路径,则删边后仍有路径).点数30000,边数100000. 分析 如果从u到v有(u,v)这条边,且从u到v只有这一条路 ...
- BZOJ4484 JSOI2015最小表示(拓扑排序+bitset)
考虑在每个点的出边中删除哪些.如果其出边所指向的点中存在某点能到达另一点,那么显然指向被到达点的边是没有用的.于是拓扑排序逆序处理,按拓扑序枚举出边,bitset维护可达点集合即可. #include ...
- BZOJ 4484: [Jsoi2015]最小表示(拓扑排序+bitset)
传送门 解题思路 \(bitset\)维护连通性,给每个点开个\(bitset\),第\(i\)位为\(1\)则表示与第\(i\)位联通.算答案时显然要枚举每条边,而枚举边的顺序需要贪心,一个点先到达 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- 「JSOI2015」最小表示
「JSOI2015」最小表示 传送门 很显然的一个结论:一条边 \(u \to v\) 能够被删去,当且仅当至少存在一条其它的路径从 \(u\) 通向 \(v\) . 所以我们就建出正反两张图,对每个 ...
随机推荐
- 数据结构(三)串---KMP模式匹配算法
(一)定义 由于BF模式匹配算法的低效(有太多不必要的回溯和匹配),于是某三个前辈发表了一个模式匹配算法,可以大大避免重复遍历的情况,称之为克努特-莫里斯-普拉特算法,简称KMP算法 (二)KMP算法 ...
- 初学Python-搞了一个linux用户登录监测小工具
这几天突发奇想,想学习一下Python.看了点基础,觉得有点枯燥,所以想搞点什么.想了想,就随便弄个检测Linux用户登录的小工具吧~ 首先,明确一下功能: 1.能够捕获 linux 用户登录的信息. ...
- bzoj千题计划179:bzoj1237: [SCOI2008]配对
http://www.lydsy.com/JudgeOnline/problem.php?id=1237 如果没有相同的数不能配对的限制 那就是排好序后 Σ abs(ai-bi) 相同的数不能配对 交 ...
- 接口测试Case之面向页面对象编写规范
一.什么是页面对象化 主要提倡的思想是:万物皆对象,即把一个Page看成一个对象,来进行接口自动化Case的编写,不要闲扯,直接讲怎么个操作法呢? 二.有什么优势? 2.1 Case层次清晰,便于管理 ...
- NP难问题求解综述
NP难问题求解综述 摘要:定义NP问题及P类问题,并介绍一些常见的NP问题,以及NP问题的一些求解方法,最后最NP问题求解的发展方向做一些展望. 关键词:NP难问题 P类问题 算法 最优化问题 ...
- [转载]微软VS2015支持Android和iOS编程
Visual Studio 2015 Preview http://www.zhihu.com/question/26594936/answer/33397319 http://www.visuals ...
- Javascript摸拟自由落体与上抛运动 说明!
JavaScript 代码 //**************************************** //名称:Javascript摸拟自由落体与上抛运动! //作者:Gloot //邮箱 ...
- 20145234黄斐《Java程序设计》第八周
教材学习内容总结 第十四章-NIO与NIO2 NIO与IO的区别 NIO Channel继承框架 想要取得Channel的操作对象,可以使用Channels类,它定义了静态方法newChannel() ...
- NIO学习(1)-入门学习
一.NIO概念 IO:标准IO,也既阻塞式IO NIO:非阻塞式IO 二.NIO与标准IO的IO工作方式 标准IO基于字节流和字符流进行操作 NIO是基于通道(Channel)和缓冲区(Buffer) ...
- [MySQL 5.6] GTID实现、运维变化及存在的bug
[MySQL 5.6] GTID实现.运维变化及存在的bug http://www.tuicool.com/articles/NjqQju 由于之前没太多深入关注gtid,这里给自己补补课,本文是我看 ...