求组合数

如果求C5 3 就是5*4*3/3*2*1 也就是(5/3)*(4/2)*(3/1)

Sample Input
5 //T
3 2 //C3 2
5 3
4 4
3 6
8 0

Sample Output
3
10
1
0
1

 # include <iostream>
# include <cstdio>
# include <cstring>
# include <algorithm>
# include <cmath>
# define LL long long
using namespace std ; double fun(LL n,LL m)//返回类型必须是浮点型,不然会造成误差
{
LL i,j ;
double a=1.0,b=1.0;
double sum = 1.0;
j = m;
while(j--)
{
a=n;
b=m;
sum=sum*a/b; //约分
n--;
m--;
}
return sum;
} int main ()
{
//freopen("in.txt","r",stdin) ;
int T ;
scanf("%d" , &T) ;
while(T--)
{
int n , m ;
cin>>n>>m ;
if (n < m)
{
printf("0\n") ;
continue ;
}
printf("%.0lf\n" , fun(n,m)) ; } return ;
}

hdu 2519 求组合数的更多相关文章

  1. HDU 5852 Intersection is not allowed!(LGV定理行列式求组合数)题解

    题意:有K个棋子在一个大小为N×N的棋盘.一开始,它们都在棋盘的顶端,它们起始的位置是 (1,a1),(1,a2),...,(1,ak) ,它们的目的地是 (n,b1),(n,b2),...,(n,b ...

  2. HDU 5698——瞬间移动——————【逆元求组合数】

    瞬间移动 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submis ...

  3. 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)

    先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...

  4. lucas求组合数C(n,k)%p

    Saving Beans http://acm.hdu.edu.cn/showproblem.php?pid=3037 #include<cstdio> typedef __int64 L ...

  5. URAL 1994 The Emperor's plan 求组合数 大数用log+exp处理

    URAL 1994 The Emperor's plan 求组合数 大数用log #include<functional> #include<algorithm> #inclu ...

  6. N!分解质因子p的个数_快速求组合数C(n,m)

    int f(int n,int p) { ) ; return f(n/p,p) + n/p; } https://www.xuebuyuan.com/2867209.html 求组合数C(n,m)( ...

  7. 求组合数、求逆元、求阶乘 O(n)

    在O(n)的时间内求组合数.求逆元.求阶乘.·.· #include <iostream> #include <cstdio> #define ll long long ;// ...

  8. 求组合数 C++程序

    一 递归求组合数 设函数为void    comb(int m,int k)为找出从自然数1.2.... .m中任取k个数的所有组合. 分析:当组合的第一个数字选定时,其后的数字是从余下的m-1个数中 ...

  9. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】

    任意门:http://codeforces.com/contest/689/problem/E E. Mike and Geometry Problem time limit per test 3 s ...

随机推荐

  1. BZOJ 3516 国王奇遇记加强版(乱推)

    题意 求\(\sum_{k=1}^{n}k^mm^k (n\leq1e9,m\leq1e3)\) 思路 在<>中有一个方法用来求和,称为摄动法. 我们考虑用摄动法来求这个和式,看能不能得到 ...

  2. 洛谷P3703 [SDOI2017]树点涂色(LCT,dfn序,线段树,倍增LCA)

    洛谷题目传送门 闲话 这是所有LCT题目中的一个异类. 之所以认为是LCT题目,是因为本题思路的瓶颈就在于如何去维护同颜色的点的集合. 只不过做着做着,感觉后来的思路(dfn序,线段树,LCA)似乎要 ...

  3. LookupError: unknown encoding: cp65001解决方案

    本人遇到这个问题搜索了很多网站,有人建议在cmd中执行命令chcp 936,然而,,,最终决定更换cmd窗口,window的cmd真的很烂, 果断使用git cmd,完美解决...

  4. 解题:APIO 2018 铁人两项

    题面 建立圆方树,考虑所有路径,发现路径上原来的点双(现在的方点)里的点都可以做中间点.但是路径上被方点夹着的圆点被计重了,要扣掉:枚举的两个端点也被算进去了,要扣掉.所以直接将方点权值设为点双大小, ...

  5. bzoj 2275: [Coci2010]HRPA

    据说叫斐波那契博弈. 先手最少取的石子数是把n用斐波那契数列拆分后最小的数. 原题+证明: http://blog.csdn.net/acm_cxlove/article/details/783501 ...

  6. 【CF771A】Bear and Friendship Condition

    题目大意:给定一张无向图,要求如果 A 与 B 之间有边,B 与 C 之间有边,那么 A 与 C 之间也需要有边.问这张图是否满足要求. 题解:根据以上性质,即:A 与 B 有关系,B 与 C 有关系 ...

  7. RBAC: 基于角色的访问控制(Role-Based Access Control)

    本文只讨论两种基于角色的访问控制的不同点,不涉及权限设计的数据库设计. 基于角色的访问控制(Role-Based Access Control)可分为隐式角色访问控制和显式角色访问控制. 隐式角色访问 ...

  8. webpack进阶--loader

    webpack的核心就是它的配置文件,只要配置好配置文件webpack就可以用得利索-- 而配置文件主要就是7个部分entry.output.plugins.resolve.devserver(web ...

  9. Hadoop生态圈-Kafka配置文件详解

    Hadoop生态圈-Kafka配置文件详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.默认kafka配置文件内容([yinzhengjie@s101 ~]$ more /s ...

  10. Java远程访问接口的几种方式

    一.Java访问远程url接口并获取结果 1.原生JavaAPI获取 package com.util; import java.io.DataOutputStream; import java.io ...