基于 REDIS 的 SETNX()、EXPIRE() 方法做分布式锁


setnx()


setnx 的含义就是 SET if Not Exists,其主要有两个参数 setnx(key, value)。该方法是原子的,如果 key 不存在,则设置当前 key 成功,返回 1;如果当前 key 已经存在,则设置当前 key 失败,返回 0。

expire()


expire 设置过期时间,要注意的是 setnx 命令不能设置 key 的超时时间,只能通过 expire() 来对 key 设置。

使用步骤


1、setnx(lockkey, 1) 如果返回 0,则说明占位失败;如果返回 1,则说明占位成功

2、expire() 命令对 lockkey 设置超时时间,为的是避免死锁问题。

3、执行完业务代码后,可以通过 delete 命令删除 key。

这个方案其实是可以解决日常工作中的需求的,但从技术方案的探讨上来说,可能还有一些可以完善的地方。比如,如果在第一步 setnx 执行成功后,在 expire() 命令执行成功前,发生了宕机的现象,那么就依然会出现死锁的问题,所以如果要对其进行完善的话,可以使用 redis 的 setnx()、get() 和 getset() 方法来实现分布式锁。

基于 REDIS 的 SETNX()、GET()、GETSET()方法做分布式锁


这个方案的背景主要是在 setnx() 和 expire() 的方案上针对可能存在的死锁问题,做了一些优化。

getset()


这个命令主要有两个参数 getset(key,newValue)。该方法是原子的,对 key 设置 newValue 这个值,并且返回 key 原来的旧值。假设 key 原来是不存在的,那么多次执行这个命令,会出现下边的效果:

  • getset(key, “value1”) 返回 null 此时 key 的值会被设置为 value1
  • getset(key, “value2”) 返回 value1 此时 key 的值会被设置为 value2
  • 依次类推!

使用步骤


  • setnx(lockkey, 当前时间+过期超时时间),如果返回 1,则获取锁成功;如果返回 0 则没有获取到锁,转向 2。
  • get(lockkey) 获取值 oldExpireTime ,并将这个 value 值与当前的系统时间进行比较,如果小于当前系统时间,则认为这个锁已经超时,可以允许别的请求重新获取,转向 3。
  • 计算 newExpireTime = 当前时间+过期超时时间,然后 getset(lockkey, newExpireTime) 会返回当前 lockkey 的值currentExpireTime。
  • 判断 currentExpireTime 与 oldExpireTime 是否相等,如果相等,说明当前 getset 设置成功,获取到了锁。如果不相等,说明这个锁又被别的请求获取走了,那么当前请求可以直接返回失败,或者继续重试。
  • 在获取到锁之后,当前线程可以开始自己的业务处理,当处理完毕后,比较自己的处理时间和对于锁设置的超时时间,如果小于锁设置的超时时间,则直接执行 delete 释放锁;如果大于锁设置的超时时间,则不需要再锁进行处理。
import cn.com.tpig.cache.redis.RedisService;
import cn.com.tpig.utils.SpringUtils; //redis分布式锁
public final class RedisLockUtil { private static final int defaultExpire = 60; private RedisLockUtil() {
//
} /**
* 加锁
* @param key redis key
* @param expire 过期时间,单位秒
* @return true:加锁成功,false,加锁失败
*/
public static boolean lock(String key, int expire) { RedisService redisService = SpringUtils.getBean(RedisService.class);
long status = redisService.setnx(key, "1"); if(status == 1) {
redisService.expire(key, expire);
return true;
} return false;
} public static boolean lock(String key) {
return lock2(key, defaultExpire);
} /**
* 加锁
* @param key redis key
* @param expire 过期时间,单位秒
* @return true:加锁成功,false,加锁失败
*/
public static boolean lock2(String key, int expire) { RedisService redisService = SpringUtils.getBean(RedisService.class); long value = System.currentTimeMillis() + expire;
long status = redisService.setnx(key, String.valueOf(value)); if(status == 1) {
return true;
}
long oldExpireTime = Long.parseLong(redisService.get(key, "0"));
if(oldExpireTime < System.currentTimeMillis()) {
//超时
long newExpireTime = System.currentTimeMillis() + expire;
long currentExpireTime = Long.parseLong(redisService.getSet(key, String.valueOf(newExpireTime)));
if(currentExpireTime == oldExpireTime) {
return true;
}
}
return false;
} public static void unLock1(String key) {
RedisService redisService = SpringUtils.getBean(RedisService.class);
redisService.del(key);
} public static void unLock2(String key) {
RedisService redisService = SpringUtils.getBean(RedisService.class);
long oldExpireTime = Long.parseLong(redisService.get(key, "0"));
if(oldExpireTime > System.currentTimeMillis()) {
redisService.del(key);
}
}
}
public void drawRedPacket(long userId) {
String key = "draw.redpacket.userid:" + userId; boolean lock = RedisLockUtil.lock2(key, 60);
if(lock) {
try {
//领取操作
} finally {
//释放锁
RedisLockUtil.unLock(key);
}
} else {
new RuntimeException("重复领取奖励");
}
}

基于 REDLOCK 做分布式锁


Redlock 是 Redis 的作者 antirez 给出的集群模式的 Redis 分布式锁,它基于 N 个完全独立的 Redis 节点(通常情况下 N 可以设置成 5)。

算法的步骤如下:

  • 1、客户端获取当前时间,以毫秒为单位。
  • 2、客户端尝试获取 N 个节点的锁,(每个节点获取锁的方式和前面说的缓存锁一样),N 个节点以相同的 key 和 value 获取锁。客户端需要设置接口访问超时,接口超时时间需要远远小于锁超时时间,比如锁自动释放的时间是 10s,那么接口超时大概设置 5-50ms。这样可以在有 redis 节点宕机后,访问该节点时能尽快超时,而减小锁的正常使用。
  • 3、客户端计算在获得锁的时候花费了多少时间,方法是用当前时间减去在步骤一获取的时间,只有客户端获得了超过 3 个节点的锁,而且获取锁的时间小于锁的超时时间,客户端才获得了分布式锁。
  • 4、客户端获取的锁的时间为设置的锁超时时间减去步骤三计算出的获取锁花费时间。
  • 5、如果客户端获取锁失败了,客户端会依次删除所有的锁。

使用 Redlock 算法,可以保证在挂掉最多 2 个节点的时候,分布式锁服务仍然能工作,这相比之前的数据库锁和缓存锁大大提高了可用性,由于 redis 的高效性能,分布式缓存锁性能并不比数据库锁差。

但是,有一位分布式的专家写了一篇文章《How to do distributed locking》,质疑 Redlock 的正确性。

https://mp.weixin.qq.com/s/1bPLk_VZhZ0QYNZS8LkviA

https://blog.csdn.net/jek123456/article/details/72954106

优缺点

优点: 性能高

缺点:

失效时间设置多长时间为好?如何设置的失效时间太短,方法没等执行完,锁就自动释放了,那么就会产生并发问题。如果设置的时间太长,其他获取锁的线程就可能要平白的多等一段时间。

基于 REDISSON 做分布式锁

redisson 是 redis 官方的分布式锁组件。GitHub 地址:https://github.com/redisson/redisson

上面的这个问题 ——> 失效时间设置多长时间为好?这个问题在 redisson 的做法是:每获得一个锁时,只设置一个很短的超时时间,同时起一个线程在每次快要到超时时间时去刷新锁的超时时间。在释放锁的同时结束这个线程。

基于 Redis 做分布式锁的更多相关文章

  1. 程序员修神之路--redis做分布式锁可能不那么简单

    菜菜哥,复联四上映了,要不要一起去看看? 又想骗我电影票,对不对? 呵呵,想去看了叫我呀 看来你工作不饱和呀 哪有,这两天我刚基于redis写了一个分布式锁,很简单 不管你基于什么做分布式锁,你觉得很 ...

  2. 基于redis 实现分布式锁的方案

    在电商项目中,经常有秒杀这样的活动促销,在并发访问下,很容易出现上述问题.如果在库存操作上,加锁就可以避免库存卖超的问题.分布式锁使分布式系统之间同步访问共享资源的一种方式 基于redis实现分布式锁 ...

  3. redis咋么实现分布式锁,redis分布式锁的实现方式,redis做分布式锁 积极正义的少年

    前言 分布式锁一般有三种实现方式:1. 数据库乐观锁:2. 基于Redis的分布式锁:3. 基于ZooKeeper的分布式锁.本篇博客将介绍第二种方式,基于Redis实现分布式锁.虽然网上已经有各种介 ...

  4. 基于Redis的分布式锁真的安全吗?

    说明: 我前段时间写了一篇用consul实现分布式锁,感觉理解的也不是很好,直到我看到了这2篇写分布式锁的讨论,真的是很佩服作者严谨的态度, 把这种分布式锁研究的这么透彻,作者这种技术态度真的值得我好 ...

  5. 基于 Redis 的分布式锁

    前言 分布式锁在分布式应用中应用广泛,想要搞懂一个新事物首先得了解它的由来,这样才能更加的理解甚至可以举一反三. 首先谈到分布式锁自然也就联想到分布式应用. 在我们将应用拆分为分布式应用之前的单机系统 ...

  6. 基于 redis 的分布式锁实现 Distributed locks with Redis debug 排查错误

    小结: 1. 锁的实现方式,按照应用的实现架构,可能会有以下几种类型: 如果处理程序是单进程多线程的,在 python下,就可以使用 threading 模块的 Lock 对象来限制对共享变量的同步访 ...

  7. 转载:基于Redis实现分布式锁

    转载:基于Redis实现分布式锁  ,出处: http://blog.csdn.net/ugg/article/details/41894947 背景在很多互联网产品应用中,有些场景需要加锁处理,比如 ...

  8. 基于redis的分布式锁的分析与实践

    ​ 前言:在分布式环境中,我们经常使用锁来进行并发控制,锁可分为乐观锁和悲观锁,基于数据库版本戳的实现是乐观锁,基于redis或zookeeper的实现可认为是悲观锁了.乐观锁和悲观锁最根本的区别在于 ...

  9. [Redis] 基于redis的分布式锁

    前言分布式锁一般有三种实现方式:1. 数据库乐观锁:2. 基于Redis的分布式锁:3. 基于ZooKeeper的分布式锁.本篇博客将介绍第二种方式,基于Redis实现分布式锁. 可靠性首先,为了确保 ...

随机推荐

  1. opengl渲染管线梳理

    opengl渲染管线梳理 http://www.cnblogs.com/zhanglitong/p/3238989.html 坐标系变换和矩阵 http://www.cppblog.com/guoji ...

  2. 在Window下编译LibGeotiff(含Libtiff)

    核心提示:1.GeoTiff简介 GeoTiff是包含地理信息的一种Tiff格式的文件. 1.GeoTiff简介 GeoTiff是包含地理信息的一种Tiff格式的文件.Libgeotiff就是一个操作 ...

  3. OpenCV——创建Mat对象、格式化输出、常用数据结构和函数(point,vector、Scalar、Size、Rect、cvtColor)

    创建Mat对象:

  4. Kafka设计解析(二十二)Flink + Kafka 0.11端到端精确一次处理语义的实现

    转载自 huxihx,原文链接 [译]Flink + Kafka 0.11端到端精确一次处理语义的实现 本文是翻译作品,作者是Piotr Nowojski和Michael Winters.前者是该方案 ...

  5. day 11 前方高能-迭代器

    第一类对象 -----函数名  == 变量名 函数对象可以像变量一样进行赋值 还可以作为列表的元素进行使用 可以作为返回值返回 def wrapper():     def inner():      ...

  6. 20155232《网络对抗》Exp5 MSF基础应用

    20155232<网络对抗>Exp5 MSF基础应用 基础问题回答 用自己的话解释什么是exploit,payload,encode. exploit:就是利用可能存在的漏洞对目标进行攻击 ...

  7. # 20155319 Exp3 免杀原理与实践

    20155319 Exp3 免杀原理与实践 基础问题 (1)杀软是如何检测出恶意代码的? 基于特征码的检测 启发式的恶意软件检测 基于行为的恶意软件检测 (2)免杀是做什么? 免杀,从字面进行理解,避 ...

  8. 20155323刘威良《网络对抗》Exp4 恶意代码分析

    20155323刘威良<网络对抗>Exp4 恶意代码分析 实践目标 1是监控你自己系统的运行状态,看有没有可疑的程序在运行. 2是分析一个恶意软件,就分析Exp2或Exp3中生成后门软件: ...

  9. 20155325 Exp6 信息搜集与漏洞扫描

    实践目标 掌握信息搜集的最基础技能与常用工具的使用方法. 实践内容 (1)各种搜索技巧的应用 (2)DNS IP注册信息的查询 (3)基本的扫描技术:主机发现.端口扫描.OS及服务版本探测.具体服务的 ...

  10. Luogu P1993 小 K 的农场

    其实很早以前就打好了,但一直忘记写了. 也就是差分约束的模板题. 关于差分约束,也就是用来求关于一些不等式互相约束算出最优解. 推荐一个讲的很好的博客:http://www.cppblog.com/m ...