洛谷P2396 yyy loves Maths VII
P2396 yyy loves Maths VII
题目背景
yyy对某些数字有着情有独钟的喜爱,他叫他们为幸运数字;然而他作死太多,所以把自己讨厌的数字成为"厄运数字"
题目描述
一群同学在和yyy玩一个游戏
每次,他们会给yyy n张卡片,卡片上有数字,所有的数字都是"幸运数字",我们认为第i张卡片上数字是ai
每次yyy可以选择向前走ai步并且丢掉第i张卡片
当他手上没有卡片的时候他就赢了
但是呢,大家对"厄运数字"的位置布置下了陷阱,如果yyy停在这个格子上,那么他就输了
(注意:即使到了终点,但是这个位置是厄运数字,那么也输了)
现在,有些同学开始问:
yyy有多大的概率会赢呢?
大家觉得这是个好问题
有人立即让yyy写个程序
"电脑运行速度很快!24的阶乘也不过就620448401733239439360000,yyy你快写个程序来算一算"
yyy表示很无语,他表示他不想算概率,最多算算赢的方案数,而且是%1,000,000,007以后的值
大家都不会写程序,只好妥协
但是这时候yyy为难了,24!太大了,要跑好长时间.
他时间严重不够!需要你的帮助!
由于yyy人格分裂,某个数字可能既属于幸运数字又属于厄运数字。
输入输出格式
输入格式:
第一行n
下面一行n张卡片
第三行m 表示yyy的厄运数字个数(最多2个)
最后一行是m个厄运数字
输出格式:
方案数%1,000,000,007
输入输出样例
8
1 3 1 5 2 2 2 3
0
40320
24
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2
10 15
0
说明
数据范围:
10%的数据n<=10
50%的数据n<=23
100%的数据n<=24
sol:这样的数据范围,感觉不是爆搜,状压dp无疑
dp[z]表示状态为z时没有厄运数字的方案数
转移较易:枚举一个在集合z中的数字i,dp[z]+=dp[z^i]
注意判断Dis,即一个集合z的距离和Dis[z]为厄运数字,那么不能进行转移
要用lowbit进行帮助转移
lowbit(x)表示一个数在二进制意义下第一位非0的数位 可以帮助枚举一个集合,比(1~n)要快
register帮助卡常
#include <bits/stdc++.h>
using namespace std;
typedef int ll;
inline ll read()
{
ll s=;
bool f=;
char ch=' ';
while(!isdigit(ch))
{
f|=(ch=='-'); ch=getchar();
}
while(isdigit(ch))
{
s=(s<<)+(s<<)+(ch^); ch=getchar();
}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(ll x)
{
if(x<)
{
putchar('-'); x=-x;
}
if(x<)
{
putchar(x+''); return;
}
write(x/);
putchar((x%)+'');
return;
}
#define W(x) write(x),putchar(' ')
#define Wl(x) write(x),putchar('\n')
const int N=(<<)+,Mod=;
int n,m,B1,B2,Dis[N],dp[N];
#define lowbit(x) ((x)&(-x))
int main()
{
register int i,j;
R(n);
for(i=;i<=n;i++) R(Dis[<<(i-)]);
R(m);
if(m>) R(B1); if(m>) R(B2);
dp[]=;
for(i=;i<(<<n);i++)
{
Dis[i]=Dis[i^(lowbit(i))]+Dis[lowbit(i)];
if(Dis[i]==B1||Dis[i]==B2) continue;
for(j=i;j;j^=lowbit(j))
{
dp[i]+=dp[i^lowbit(j)];
dp[i]-=(dp[i]>=Mod)?Mod:;
}
}
Wl(dp[(<<n)-]);
return ;
}
/*
input
8
1 3 1 5 2 2 2 3
0
output
40320 input
24
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2
10 15
output
0
*/
洛谷P2396 yyy loves Maths VII的更多相关文章
- [CF327E]Axis Walking([洛谷P2396]yyy loves Maths VII)
题目大意:给一个长度为$n(1\leqslant n\leqslant24)$的序列$S$和$k(0\leqslant k\leqslant2)$个数. 求有多少种$S$的排列方式使得其任何一个前缀和 ...
- 洛谷P2396 yyy loves Maths VII【状压dp】
题目:https://www.luogu.org/problemnew/show/P2396 题意:有n个数,每次选择一个表示走$a[i]$步,每个数只能选一次. 最多有两个厄运数字,如果走到了厄运数 ...
- [洛谷P2396]yyy loves Maths VII $\&$ [CF327E]Axis Walking
这道题是一个状压动归题.子集生成,每一位表示是否选择了第$i$个数. 转移:$f[S] = \sum f[S-\{x\}]$且$x\in S$,当该子集所有元素的和为$b_1$或$b_2$时不转移. ...
- 洛谷P2397 yyy loves Maths VI (mode)
P2397 yyy loves Maths VI (mode) 题目背景 自动上次redbag用加法好好的刁难过了yyy同学以后,yyy十分愤怒.他还击给了redbag一题,但是这题他惊讶的发现自己居 ...
- 洛谷——P2393 yyy loves Maths II
P2393 yyy loves Maths II 题目背景 上次蒟蒻redbag可把yyy气坏了,yyy说他只是小学生,蒟蒻redbag这次不坑他了. 题目描述 redbag给了yyy很多个数,要yy ...
- 洛谷 P2393 yyy loves Maths II
P2393 yyy loves Maths II 题目背景 上次蒟蒻redbag可把yyy气坏了,yyy说他只是小学生,蒟蒻redbag这次不坑他了. 题目描述 redbag给了yyy很多个数,要yy ...
- [洛谷2397]yyy loves Maths VI
题目背景 自动上次redbag用加法好好的刁难过了yyy同学以后,yyy十分愤怒.他还击给了redbag一题,但是这题他惊讶的发现自己居然也不会,所以只好找你 题目描述 他让redbag找众数他还特意 ...
- [P2396] yyy loves Maths VII
Link: P2396 传送门 Solution: 一眼能看出$O(n*2^n)$的状压$dp$ 但此题是个卡常题,$n=23/24$的时候就别想过了 这题算是提供了一种对状压$dp$的优化思路吧 原 ...
- 洛谷 P1580 yyy loves Easter_Egg I
洛谷 P1580 yyy loves Easter_Egg I 题解: 队列+字符串 #include <cstdio> #include <string> #include ...
随机推荐
- Java关键字(二)——native
本篇博客我们将介绍Java中的一个关键字——native. native 关键字在 JDK 源码中很多类中都有,在 Object.java类中,其 getClass() 方法.hashCode()方法 ...
- Mac软件推荐
其他: AP文档浏览器+代码片段管理工具:Dash 抓包工具:Charles 使用教程:http://www.cnblogs.com/dsxniubility/p/4621314.html 音乐播放 ...
- 20155308 《网络攻防》 Exp2 后门原理与实践
20155308 <网络攻防> Exp2 后门原理与实践 学习内容:使用nc实现win,mac,Linux间的后门连接 :meterpraeter的应用 :MSF POST 模块的应用 学 ...
- system表空间不可改名
SQL> startup mount;ORACLE instance started. Total System Global Area 814227456 bytesFixed Size ...
- Kubernetes学习之路(二十二)之Pod资源调度
目录 Pod资源调度 1.常用的预选策略 2.优选函数 3.节点亲和调度 3.1.节点硬亲和性 3.2.节点软亲和性 4.Pod资源亲和调度 4.1.Pod硬亲和度 4.2.Pod软亲和度 4.3.P ...
- 解决 idea 中的 tomcat控制台 和cmd tomcat下的中文乱码问题(win10 64位)
原理:idea控制台里的日志默认是从tomcat的localhost.log 和 catalina.log 两个文件中读出来的. https://blog.csdn.net/zhaijingkui/a ...
- 部署AlwaysOn第二步:配置AlwaysOn,创建可用性组
AlwaysOn是在SQL Server 2012中新引入的一种高可用技术,从名称中可以看出,AlwaysOn的设计目标是保持数据库系统永远可用.AlwaysOn利用了Windows服务器故障转移集群 ...
- 浅析java构造函数前的访问限定符问题
曾经一直有个问题困扰着我,我一直以为构造函数前面不能加任何东西,但偶然间看到了一本书上写的代码中,构造函数前加了public限定符,心里很是疑惑,构造函数前加毛访问限定符啊??! 在网上查了很多资料 ...
- Visual Studio控制台程序输出窗口一闪而过的解决方法
转载大牛的博客,自己也遇到了类似的问题,解决方法很详细,也很管用 刚接触 Visual Studio的时候大多数人会写个Hello World的程序试一下,有的人会发现执行结束后输出窗口会一闪而过 ...
- docker之故障问题解决方案
1.报错如下一 Error response from daemon: driver failed programming external connectivity on endpoint lnmp ...