P2396 yyy loves Maths VII

题目背景

yyy对某些数字有着情有独钟的喜爱,他叫他们为幸运数字;然而他作死太多,所以把自己讨厌的数字成为"厄运数字"

题目描述

一群同学在和yyy玩一个游戏

每次,他们会给yyy n张卡片,卡片上有数字,所有的数字都是"幸运数字",我们认为第i张卡片上数字是ai

每次yyy可以选择向前走ai步并且丢掉第i张卡片

当他手上没有卡片的时候他就赢了

但是呢,大家对"厄运数字"的位置布置下了陷阱,如果yyy停在这个格子上,那么他就输了

(注意:即使到了终点,但是这个位置是厄运数字,那么也输了)

现在,有些同学开始问:

yyy有多大的概率会赢呢?

大家觉得这是个好问题

有人立即让yyy写个程序

"电脑运行速度很快!24的阶乘也不过就620448401733239439360000,yyy你快写个程序来算一算"

yyy表示很无语,他表示他不想算概率,最多算算赢的方案数,而且是%1,000,000,007以后的值

大家都不会写程序,只好妥协

但是这时候yyy为难了,24!太大了,要跑好长时间.

他时间严重不够!需要你的帮助!

由于yyy人格分裂,某个数字可能既属于幸运数字又属于厄运数字。

输入输出格式

输入格式:

第一行n

下面一行n张卡片

第三行m 表示yyy的厄运数字个数(最多2个)

最后一行是m个厄运数字

输出格式:

方案数%1,000,000,007

输入输出样例

输入样例#1:

8
1 3 1 5 2 2 2 3
0
输出样例#1:

40320
输入样例#2:

24
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2
10 15
输出样例#2:

0

说明

数据范围:

10%的数据n<=10

50%的数据n<=23

100%的数据n<=24

sol:这样的数据范围,感觉不是爆搜,状压dp无疑

dp[z]表示状态为z时没有厄运数字的方案数

转移较易:枚举一个在集合z中的数字i,dp[z]+=dp[z^i]

注意判断Dis,即一个集合z的距离和Dis[z]为厄运数字,那么不能进行转移

要用lowbit进行帮助转移

lowbit(x)表示一个数在二进制意义下第一位非0的数位 可以帮助枚举一个集合,比(1~n)要快

register帮助卡常

#include <bits/stdc++.h>
using namespace std;
typedef int ll;
inline ll read()
{
ll s=;
bool f=;
char ch=' ';
while(!isdigit(ch))
{
f|=(ch=='-'); ch=getchar();
}
while(isdigit(ch))
{
s=(s<<)+(s<<)+(ch^); ch=getchar();
}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(ll x)
{
if(x<)
{
putchar('-'); x=-x;
}
if(x<)
{
putchar(x+''); return;
}
write(x/);
putchar((x%)+'');
return;
}
#define W(x) write(x),putchar(' ')
#define Wl(x) write(x),putchar('\n')
const int N=(<<)+,Mod=;
int n,m,B1,B2,Dis[N],dp[N];
#define lowbit(x) ((x)&(-x))
int main()
{
register int i,j;
R(n);
for(i=;i<=n;i++) R(Dis[<<(i-)]);
R(m);
if(m>) R(B1); if(m>) R(B2);
dp[]=;
for(i=;i<(<<n);i++)
{
Dis[i]=Dis[i^(lowbit(i))]+Dis[lowbit(i)];
if(Dis[i]==B1||Dis[i]==B2) continue;
for(j=i;j;j^=lowbit(j))
{
dp[i]+=dp[i^lowbit(j)];
dp[i]-=(dp[i]>=Mod)?Mod:;
}
}
Wl(dp[(<<n)-]);
return ;
}
/*
input
8
1 3 1 5 2 2 2 3
0
output
40320 input
24
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2
10 15
output
0
*/

洛谷P2396 yyy loves Maths VII的更多相关文章

  1. [CF327E]Axis Walking([洛谷P2396]yyy loves Maths VII)

    题目大意:给一个长度为$n(1\leqslant n\leqslant24)$的序列$S$和$k(0\leqslant k\leqslant2)$个数. 求有多少种$S$的排列方式使得其任何一个前缀和 ...

  2. 洛谷P2396 yyy loves Maths VII【状压dp】

    题目:https://www.luogu.org/problemnew/show/P2396 题意:有n个数,每次选择一个表示走$a[i]$步,每个数只能选一次. 最多有两个厄运数字,如果走到了厄运数 ...

  3. [洛谷P2396]yyy loves Maths VII $\&$ [CF327E]Axis Walking

    这道题是一个状压动归题.子集生成,每一位表示是否选择了第$i$个数. 转移:$f[S] = \sum f[S-\{x\}]$且$x\in S$,当该子集所有元素的和为$b_1$或$b_2$时不转移. ...

  4. 洛谷P2397 yyy loves Maths VI (mode)

    P2397 yyy loves Maths VI (mode) 题目背景 自动上次redbag用加法好好的刁难过了yyy同学以后,yyy十分愤怒.他还击给了redbag一题,但是这题他惊讶的发现自己居 ...

  5. 洛谷——P2393 yyy loves Maths II

    P2393 yyy loves Maths II 题目背景 上次蒟蒻redbag可把yyy气坏了,yyy说他只是小学生,蒟蒻redbag这次不坑他了. 题目描述 redbag给了yyy很多个数,要yy ...

  6. 洛谷 P2393 yyy loves Maths II

    P2393 yyy loves Maths II 题目背景 上次蒟蒻redbag可把yyy气坏了,yyy说他只是小学生,蒟蒻redbag这次不坑他了. 题目描述 redbag给了yyy很多个数,要yy ...

  7. [洛谷2397]yyy loves Maths VI

    题目背景 自动上次redbag用加法好好的刁难过了yyy同学以后,yyy十分愤怒.他还击给了redbag一题,但是这题他惊讶的发现自己居然也不会,所以只好找你 题目描述 他让redbag找众数他还特意 ...

  8. [P2396] yyy loves Maths VII

    Link: P2396 传送门 Solution: 一眼能看出$O(n*2^n)$的状压$dp$ 但此题是个卡常题,$n=23/24$的时候就别想过了 这题算是提供了一种对状压$dp$的优化思路吧 原 ...

  9. 洛谷 P1580 yyy loves Easter_Egg I

    洛谷 P1580 yyy loves Easter_Egg I 题解: 队列+字符串 #include <cstdio> #include <string> #include ...

随机推荐

  1. JAVA框架 Spring 注解注入

    一.首先需要引入jar包:spring-aop-4.2.4.RELEASE.jar.(在spring解压包libs内). 二.如果注解方式注入依赖的对象,需要引用新的约束. 内的:xsd-config ...

  2. 树莓派学习笔记(5):成功实现NAS家庭服务器(流媒体播放、文件共享及下载机)

    转载请注明:@小五义http://www.cnblogs.com/xiaowuyiQQ群:64770604 一.家庭服务器实现的主要功能 1.流媒体播放服务:利用DLNA实现电视.手机.电脑播放其上面 ...

  3. Docker搭建Mysql容器

    转载自:http://blog.csdn.net/Mungo/article/details/78521832?locationNum=9&fps=1 本文介绍如何使用docker迅速搭建My ...

  4. android studio更新gradle失败的解决办法-转

    android studio中每次自动更新gradle时速度实在太慢因为gradle服务器比较慢,所以更新gradle会比较慢,建议先下载下来,然后手动添加到gradle的下载目录,提升速度. 使用下 ...

  5. 20155313 杨瀚 《网络对抗技术》实验五 MSF基础应用

    20155313 杨瀚 <网络对抗技术>实验五 MSF基础应用 一.实验目的 本实验目标是掌握metasploit的基本应用方式,重点常用的三种攻击方式的思路.具体需要完成: 1.一个主动 ...

  6. 赚钱的小生意,VC对你没兴趣

    创业者,赚钱的生意就不要去找VC(风险投资)了,因为人家对你的生意没有兴趣. 无论是创业者,VC,股权投资散户,都需要对一个"生意"的规模有个总体的认识. 就"生意&qu ...

  7. 汇编 REPNE/REPNZ指令,SCASW指令,SCASD指令,SCAS指令

    知识点: REPNE/REPNZ 指令 SCASW 指令 SCASD 指令 SCAS 指令 一.SCASW 指令 //SCASB cmp word ptr [edi],al //对标志位的影响 ...

  8. libgdx学习记录5——演员Actor

    Actor也是libgdx中非常重要的一个元素,一般与stage配合一起使用.Actor能够设置大小,位置,旋转和动画等. 我们自定义的Actor一般需要继承于Actor,并且重写其中的act和dra ...

  9. js中的数据类型及判断方法

    ECMAScirpt 变量有两种不同的数据类型:基本类型,引用类型. 基本类型 ● Boolean ● Null ● Undefined ● Number ● String ● Symbol (ECM ...

  10. 【ORACLE】oracle11g单实例安装

    -- 上传安装包 p13390677_112040_Linux-x86-64_1of7.zip p13390677_112040_Linux-x86-64_2of7.zip -- 解压安装包 unzi ...