POJ - 2115C Looooops 扩展欧几里得(做的少了无法一眼看出)
题目大意&&分析:
for (variable = A; variable != B; variable += C)
statement;
这个循环式子表示a+c*n(n为整数)==b是停止循环,题目中要求(a+c*n)%2^k=b时停止循环;所以我们可以得到一个形如ax+by=c的方程式:a+c*n=b+2^k*m;
通过移项:c*x-2^k*m=b-a;
可以直接套exgcd模板了: 代码:
#include <iostream> using namespace std;
typedef long long ll;
ll d;
ll x,y;
void exgcd(ll a,ll b,ll &d,ll &x,ll &y)
{
if (!b)
{
x=;y=;d=a;return ;
}
else
{
exgcd(b,a%b,d,y,x);
y-=(a/b)*x;
}
}
int main()
{
ll a,b,c,k;
while (cin>>a>>b>>c>>k&&(a+b+c+k))
{
ll C=(ll)<<k; //注意别写成ll k=(ll)1<<k; 会出错就是了; exgcd(c,C,d,x,y);
//cout<<x<<y<<endl;
if ((b-a)%d)
{
cout<<"FOREVER"<<endl;
}
else
{
x=x*(b-a)/d;
C/=d; //1
x=(x%C+C)%C; //2
cout<<x<<endl;
}
}
}
这两行用于求出最小正整数解,ax+by=c; a,b互素,则ax1+by1=ax2+by2;那么(x1-x2)一定是b的整数倍,
所以当x>0时,x%b即为所求;
x<0时,x%b+b即为所求,二者综合就是(x%b+b)%b可以得出最小正整数解;
POJ - 2115C Looooops 扩展欧几里得(做的少了无法一眼看出)的更多相关文章
- poj2115 C Looooops——扩展欧几里得
题目:http://poj.org/problem?id=2115 就是扩展欧几里得呗: 然而忘记除公约数... 代码如下: #include<iostream> #include< ...
- C Looooops(扩展欧几里得+模线性方程)
http://poj.org/problem?id=2115 题意:给出A,B,C和k(k表示变量是在k位机下的无符号整数),判断循环次数,不能终止输出"FOREVER". 即转化 ...
- POJ 2115 C Looooops(扩展欧几里得)
辗转相除法(欧几里得算法) 时间复杂度:在O(logmax(a, b))以内 int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a ...
- POJ 2115 C Looooops(扩展欧几里得应用)
题目地址:POJ 2115 水题. . 公式非常好推.最直接的公式就是a+n*c==b+m*2^k.然后能够变形为模线性方程的样子,就是 n*c+m*2^k==b-a.即求n*c==(b-a)mod( ...
- POJ 2115 C Looooops扩展欧几里得
题意不难理解,看了后就能得出下列式子: (A+C*x-B)mod(2^k)=0 即(C*x)mod(2^k)=(B-A)mod(2^k) 利用模线性方程(线性同余方程)即可求解 模板直达车 #incl ...
- B - C Looooops POJ - 2115 (扩展欧几里得)
题目链接:https://cn.vjudge.net/contest/276376#problem/B 题目大意:for( int i= A ; i != B; i+ = c ),然后给你A,B,C ...
- POJ2115 C Looooops[扩展欧几里得]
C Looooops Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 24355 Accepted: 6788 Descr ...
- C Looooops(扩展欧几里得)
C Looooops Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 20128 Accepted: 5405 Descripti ...
- C - 青蛙的约会 POJ - 1061 (扩展欧几里得)
题目链接:https://cn.vjudge.net/contest/276376#problem/C 题目大意:中文题目. 具体思路:扩展gcd,具体证明过程看图片(就这麽个题我搞了一天,,,). ...
随机推荐
- HGOI20181029模拟题解
HGOI20181029模拟题解 /* sxn让我一定要谴责一下出题人和他的数据! */ problem: 给出十进制数a,b,然后令(R)10=(a)10*(b)10,给出c表示一个k进制数(1&l ...
- 【转】AD转换中常用的十种数字滤波法
在AD采集中经常要用到数字滤波,而不同情况下又有不同的滤波需求,下面是10种经典的软件滤波方法的程序和优缺点分析: 限幅滤波法(又称程序判断滤波法) 中位值滤波法 算术平均滤波法 递推平均滤波法(又称 ...
- 学习5_STM32--外设通信方式
就拿stm32的外设spi来说,通信方式主要有3种 > spi常规收发方式 (在轮询机制下通过判断缓冲区空与非空作为收发依据) > spi中断收发方式 (在中断机制下收发数据 ...
- 2:jquery.cookie用法详细解析
一个轻量级的cookie 插件,可以读取.写入.删除 cookie. jquery.cookie.js 的配置 首先包含jQuery的库文件,在后面包含 jquery.cookie.js 的库文件. ...
- Asp.net MVC3 CSS 模板
http://www.cnblogs.com/huyq2002/archive/2011/12/16/2289795.html Asp.net MVC3 CSS 模板 如果你现在正在用asp.net ...
- Java IO 类一览表
下表列出了大多数(非全部)按输/输出,基于字节或字符划分的 Java IO 类.
- pthread_detach
http://blog.csdn.net/scanery/article/details/7241890 感谢作者! 近来发现 在线程函数第一行调用 pthread_detach(pthread_ ...
- element-ui 设置input的只读或禁用
只读:readonly 在data里定义:readonly: true, 然后在input框里加上readonly就可以了. 禁用:disabled 在data里定义:edit: true, 然后在i ...
- bzoj千题计划104:bzoj1013: [JSOI2008]球形空间产生器sphere
http://www.lydsy.com/JudgeOnline/problem.php?id=1013 设球心(x1,x2,x3……) 已知点的坐标为t[i][j] 那么 对于每个i满足 Σ (t[ ...
- JavaScript继承详解(三)
在第一章中,我们使用构造函数和原型的方式在JavaScript的世界中实现了类和继承, 但是存在很多问题.这一章我们将会逐一分析这些问题,并给出解决方案. 注:本章中的jClass的实现参考了Simp ...