题解

传说中的……半标准杨表(行单调不增,列单调减)

如果N能整除M,我们把序列分成\(\frac{N}{M}\)段

然后里面要填K个1,显然我每一段必须填K个1,且可以构造出合法的序列,所以最少要填\(K\frac{N}{M}\)个1

我们列出一个K行\(\frac{N}{M}\)列的矩阵,\((i,j)\)表示第j段第i个1填的位置,显然列是单调降的,而每行需要单调不增

这是一个半标准的杨表

公式是\(\prod_{(i,j)} \frac{r + j - i}{hook(i,j)}\)

r是值域的大小

然后我们把要乘的数和要除的数列成一个矩阵,就会发现我们会约掉很多,只剩下两边总的大小不超过\(M*K\)的矩阵

那么\(N\)不整除\(M\)呢,我们根据\(N % M\)分类一下,设\(P = N % M\),\(P < M - K\),那么我们前面\(P\)位必须都填0

如果\(P > M - K\),那么我们新增一段,每段后\(M - P\)个位置必须填1

如果\(P = M - K\),那么只有唯一的一种方案

代码

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pdi pair<db,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define eps 1e-8
#define mo 974711
#define MAXN 2005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int N,M,K;
const int MOD = 1000000007;
int inv[205];
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
void Solve(int r,int c,int m) {
int hr = r + c - 1,hl = r;
int tl = m,tr = m + c - 1;
int res = 1;
for(int i = hl ; i < tl ; ++i) {
for(int k = 0 ; k < r ; ++k) {
res = mul(res,inv[i - k]);
}
}
for(int i = hr + 1 ; i <= tr ; ++i) {
for(int k = 0 ; k < r ; ++k) {
res = mul(res,i - k);
}
}
out(res);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
int T;
read(T);
inv[1] = 1;
for(int i = 2 ; i <= 200 ; ++i) {
inv[i] = mul(inv[MOD % i],MOD - MOD / i);
} while(T--) {
read(N);read(M);read(K);
int P = N % M;
if(P == M - K) puts("1");
else if(P < M - K) Solve(K,N / M,M - P);
else Solve(K - (M - P),N / M + 1,P);
}
return 0;
}

【Codechef】BB-Billboards的更多相关文章

  1. 【CodeChef】Querying on a Grid(分治,最短路)

    [CodeChef]Querying on a Grid(分治,最短路) 题面 Vjudge CodeChef 题解 考虑分治处理这个问题,每次取一个\(mid\),对于\(mid\)上的三个点构建最 ...

  2. 【CodeChef】Palindromeness(回文树)

    [CodeChef]Palindromeness(回文树) 题面 Vjudge CodeChef 中文版题面 题解 构建回文树,现在的问题就是要求出当前回文串节点的长度的一半的那个回文串所代表的节点 ...

  3. 【CodeChef】Find a special connected block - CONNECT(斯坦纳树)

    [CodeChef]Find a special connected block - CONNECT(斯坦纳树) 题面 Vjudge 题解 还是一样的套路题,把每个数字映射到\([0,K)\)的整数, ...

  4. 【CODECHEF】【phollard rho + miller_rabin】The First Cube

    All submissions for this problem are available. Read problems statements in Mandarin Chinese and Rus ...

  5. 【codechef】FN/Fibonacci Number

    题意 给出 c 和 P ,求最小的非负整数 n 使得 \(Fib(n)=c(mod~ P)\) 其中 P 是质数且 模 10 等于一个完全平方数(也就是说 P 的末位是个完全平方数,那么只能是 1 或 ...

  6. 【CodeChef】Prime Distance On Tree

    vjudge 给定一棵边长都是\(1\)的树,求有多少条路径长度为质数 树上路径自然是点分治去搞,但是发现要求是长度为质数,总不能对每一个质数都判断一遍吧 自然是不行的,这个东西显然是一个卷积,我们合 ...

  7. 【Codechef】Chef and Bike(二维多项式插值)

    something wrong with my new blog! I can't type matrixs so I come back. qwq 题目:https://www.codechef.c ...

  8. 【CodeChef】QTREE- Queries on tree again!

    题解 给你一棵基环树,环长为奇数(两点间最短路径只有一条) 维护两点间路径最大子段和,支持把一条路径上的值取反 显然只要断开一条边维护树上的值,然后对于那条边分类讨论就好了 维护树上的值可以通过树链剖 ...

  9. 【xsy2111】 【CODECHEF】Chef and Churus 分块+树状数组

    题目大意:给你一个长度为$n$的数列$a_i$,定义$f_i=\sum_{j=l_i}^{r_i} num_j$. 有$m$个操作: 操作1:询问一个区间$l,r$请你求出$\sum_{i=l}^{r ...

随机推荐

  1. MT【196】整数个数

    设函数$f(x)=x^2-2ax+15-2a$的两个零点分别为$x_1,x_2$, 且在区间$(x_1,x_2)$上恰好有两个正整数,则实数$a$的取值范围______ 提示:$1<|x_1-x ...

  2. 【刷题】洛谷 P4320 道路相遇

    题目描述 在 H 国的小 w 决定到从城市 \(u\) 到城市 \(v\) 旅行,但是此时小 c 由于各种原因不在城市 \(u\),但是小 c 决定到在中途与小 w 相遇 由于 H 国道路的原因,小 ...

  3. IntelliJ IDEA 创建Java Web项目

    1. 创建Web项目 可以先阅读 IntelliJ IDEA 的安装和使用教程 注意:IntelliJ IDEA 中 Project 和 Module 的概念及区别 创建完成后点击Import Cha ...

  4. 洛谷乐多赛 yyy loves Maths VI (mode)

    题目描述 他让redbag找众数 他还特意表示,这个众数出现次数超过了一半 一共n个数,而且保证有 n<=2000000 而且每个数<2^31-1 时间限制 1s 空间限制 3.5M(你没 ...

  5. DynamicSegmentTree

    最近尝试了一下动态开点线段树,英文直译就是Dynamic Open Point Segment Tree,太SB了. 就跟之前的主席树写法差不多. if(!x || x == y) { x = ++t ...

  6. 【CF437C】The Child and Toy

    题目大意:给定一个有 N 个点,M 条边的无向图,点有点权,删除一个点就要付出所有与之有联系且没有被删除的点的点权之和的代价,求将所有点删除的最小代价是多少. 题解:从图连通性的角度出发,删除所有点就 ...

  7. 在Linux中将脚本做成系统服务

    有一些情况下,我们需要将某些脚本作为系统服务来运行.比如,在我使用workerman框架开发php程序时,需要使用管理员权限来运行,而且需要开机自行启动程序提供服务.这个时候将启动程序写成服务就可以很 ...

  8. CentOS 7 系统root用户忘记密码的重置方法

    在一台服务器我们忘记了root的账号或者root账号错误怎么办,我们只有进入到内核里面去修改,具体的操作如下: 1.进入内核 在开机的时候出现下图的界面时 按e键进入内核入下图 2.进入单用户模式 在 ...

  9. 引用EChart和Bootstrap

    1.怎么引用Echart 下载之后,写一个html,里面这样写 <!DOCTYPE html> <html> <head> <meta charset=&qu ...

  10. 什么是spu和sku

    电商概念SPU与SKU SPU = Standard Product Unit (标准产品单位)SPU是商品信息聚合的最小单位,是一组可复用.易检索的标准化信息的集合,该集合描述了一个产品的特性.通俗 ...