mapPartitions
mapPartitions操作与 map类似,只不过映射的参数由RDD中的每一个元素变成了RDD中每一个分区的迭代器,如果映射过程需要频繁创建额外的对象,使用mapPartitions操作要比map操作效率高效许多。比如将RDD中的所有数据通过JDBC链接写入数据库,如果使用map函数,可能要为每个元素创建一个connection,开销很大。如果使用mapPartitions,那么只需要针对一个分区建立connection.
Scala中的yield的主要作用是记住每次迭代中的有关值,并逐一存入到一个数组中。
for {子句} yield {变量或表达式}
scala> val numrdd=sc.makeRDD(1 to 10,3)
numrdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[51] at makeRDD at <console>:25
scala> def sumn(iter:Iterator[Int])={val aa=for(i<-iter) yield i*2;aa.toIterator}
sumn: (iter: Iterator[Int])Iterator[Int]
scala> numrdd.mapPartitions(sumn).collect
res49: Array[Int] = Array(2, 4, 6, 8, 10, 12, 14, 16, 18, 20)
-----------------------------------------------
分区中的数值求和
scala> val numRDD=sc.makeRDD(1 to 10,3)
numRDD: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[210] at makeRDD at <console>:25
scala> numRDD.mapPartitions(x=>{val result=List(); var i=0;while(x.hasNext){i+=x.next()};result.::(i).toIterator}).collect
res136: Array[Int] = Array(6, 15, 34)
scala> numRDD.mapPartitions(x=>{
val result=List();
var i=0;
while(x.hasNext)
{
i+=x.next()
};
result.::(i).toIterator
}
).collect
res136: Array[Int] = Array(6, 15, 34)
-------------------------------------------------------------
scala> val numRDD=sc.makeRDD(1 to 10,3)
numRDD: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[4] at makeRDD at <console>:24
scala> def partionsum(iter:Iterator[Int])={var result=List[Int]();var i:Int= 0;while(iter.hasNext){var n:Int=iter.next; i += n;} ;result.::(i).toIterator}
partionsum: (iter: Iterator[Int])Iterator[Int]
scala> def partionsum(iter:Iterator[Int])={
var result=List[Int]();
var i:Int= 0;
while(iter.hasNext){
var n:Int=iter.next;
i += n;
} ;
result.::(i).toIterator
}
partionsum: (iter: Iterator[Int])Iterator[Int]
scala> numRDD.mapPartitions(partionsum).collect
res7: Array[Int] = Array(6, 15, 34)
--------------------------------------
分区内的数值进行求和,并展示分区号
scala> val numRDD=sc.makeRDD(1 to 10,3)
numRDD: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[4] at makeRDD at <console>:24
scala> numRDD.mapPartitionsWithIndex((x,iter)=>{val result=List(); var i=0;while(iter.hasNext){i+=iter.next()};result.::(x+"|"+i).toIterator}).collect
res138: Array[String] = Array(0|6, 1|15, 2|34)
scala> numRDD.mapPartitionsWithIndex((x,iter)=>{
val result=List();
var i=0;
while(iter.hasNext){
i+=iter.next()
};
result.::(x+"|"+i).toIterator
}).collect
res138: Array[String] = Array(0|6, 1|15, 2|34)
------------------------------
scala> val numRDD=sc.makeRDD(1 to 10,3)
numRDD: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[4] at makeRDD at <console>:24
scala> def partionwithindexsum(x:Int,iter:Iterator[Int])={var result=List[Int]();var i:Int= 0;while(iter.hasNext){var n:Int=iter.next; i += n;} ;result.::(x+"|"+i).toIterator} partionwithindexsum: (x: Int, iter: Iterator[Int])Iterator[Any]
scala> def partionwithindexsum(x:Int,iter:Iterator[Int])={
var result=List[Int]();
var i:Int= 0;
while(iter.hasNext){
var n:Int=iter.next;
i += n;
} ;
result.::(x+"|"+i).toIterator
}
partionwithindexsum: (x: Int, iter: Iterator[Int])Iterator[Any]
scala> numRDD.mapPartitionsWithIndex(partionwithindexsum).collect
res9: Array[Any] = Array(0|6, 1|15, 2|34)
----------------------
统计每个分区的元素数
scala> val numRDD=sc.makeRDD(1 to 10,3)
numRDD: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[4] at makeRDD at <console>:24
scala> def partionwithindexlength(x:Int,iter:Iterator[Int])={var result=List[Int]();var i:Int= iter.toList.length;result.::(x+"|"+i).toIterator}
partionwithindexlength: (x: Int, iter: Iterator[Int])Iterator[Any]
scala> def partionwithindexlength(x:Int,iter:Iterator[Int])={
var result=List[Int]();
var i:Int= iter.toList.length;
result.::(x+"|"+i).toIterator
}
partionwithindexlength: (x: Int, iter: Iterator[Int])Iterator[Any]
scala> numRDD.mapPartitionsWithIndex(partionwithindexlength).collect
res10: Array[Any] = Array(0|3, 1|3, 2|4)
mapPartitions的更多相关文章
- map与mapPartitions
区别在于sc.map是将RDD下的所有行数据统计处理.而sc.mapPartitions是按RDD分区进行数据统计处理. 测试一下: val data = sc.parallelize(1 to 6, ...
- spark小技巧-mapPartitions
与map方法类似,map是对rdd中的每一个元素进行操作,而mapPartitions(foreachPartition)则是对rdd中的每个分区的迭代器进行操作.如果在map过程中需要频繁创建额外的 ...
- spark中map与mapPartitions区别
在spark中,map与mapPartitions两个函数都是比较常用,这里使用代码来解释一下两者区别 import org.apache.spark.{SparkConf, SparkContext ...
- Spark 学习笔记之 map/flatMap/filter/mapPartitions/mapPartitionsWithIndex/sample
map/flatMap/filter/mapPartitions/mapPartitionsWithIndex/sample:
- spark map和mapPartitions的区别
package dayo1 import org.apache.spark.{SparkConf, SparkContext} import scala.collection.mutable.Arra ...
- java实现spark常用算子之mapPartitions
import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.a ...
- Spark API 之 map、mapPartitions、mapValues、flatMap、flatMapValues详解
原文地址:https://blog.csdn.net/helloxiaozhe/article/details/80492933 1.创建一个RDD变量,通过help函数,查看相关函数定义和例子: & ...
- spark中map和mapPartitions算子的区别
区别: 1.map是对rdd中每一个元素进行操作 2.mapPartitions是对rdd中每个partition的迭代器进行操作 mapPartitions优点: 1.若是普通map,比如一个par ...
- Spark算子--mapPartitions和mapPartitionsWithIndex
mapPartitions--Transformation类算子 代码示例 result mapPartitionsWithIndex--Transformation类算子 代码示例 result ...
随机推荐
- Java序列化的理解与学习
1.什么是Java序列化 Java平台允许我们在内存中创建可复用的Java对象,但一般情况下,只有当JVM处于运行时,这些对象才可能存在,即,这些对象的生命周期不会比 JVM的生命周期更长.但在现实应 ...
- 【AMQ】之安装,启动,访问
1.访问官网下载AMQ 2.解压下载包 windows直接找到系统对应的win32|win64 双击activemq.bat 即可 linux执行 ./activemq start 访问: AMQ默认 ...
- 【Graphite】Graphite常用函数使用
使用Graphite进行sort排名 限制返回条数 aliasByNode(limit(sortByMaxima(summarize(EPIC.bm.00*.memory.memory.buffere ...
- 1049.(*) Counting Ones
题意:题目大意:给出一个数字n,求1~n的所有数字里面出现1的个数 思路:转自(柳婼 の blog)遍历数字的低位到高位,设now为当前位的数字,left为now左边的所有数字构成的数字,right是 ...
- PAT 乙级 1046 划拳(15) C++版
1046. 划拳(15) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue 划拳是古老中国酒文化的一个有趣的组成部分 ...
- console.log()换行和document.write()换行
<!DOCTYPE html><html ><head><meta charset="utf-8"><title>ddd ...
- 廖雪峰Java2面向对象编程-4抽象类和接口-1抽象类
每个子类都可以覆写父类的方法 如果父类的方法没有实际意义,能否去掉方法的执行语句?子类会报编译错误 如果去掉父类的方法,就失去了多态的特性 可以把父类的方法声明为抽象方法. 如果一个class定义了方 ...
- 时间同步chrony
时间同步chrony [root@compute02 ~]# yum install chrony 编辑配置文件 将sever区块下的内容修改为时间服务器的地址 .此处可以写局域网内的 ...
- 倒数第N个字符串
给定一个完全由小写英文字母组成的字符串等差递增序列,该序列中的每个字符串的长度固定为 L,从 L 个 a 开始,以 1 为步长递增.例如当 L 为 3 时,序列为 { aaa, aab, aac, . ...
- 00006 - Linux中使用export命令设置环境变量
功能说明:设置或显示环境变量. #################################################################################### ...