mapPartitions操作与 map类似,只不过映射的参数由RDD中的每一个元素变成了RDD中每一个分区的迭代器,如果映射过程需要频繁创建额外的对象,使用mapPartitions操作要比map操作效率高效许多。比如将RDD中的所有数据通过JDBC链接写入数据库,如果使用map函数,可能要为每个元素创建一个connection,开销很大。如果使用mapPartitions,那么只需要针对一个分区建立connection.

Scala中的yield的主要作用是记住每次迭代中的有关值,并逐一存入到一个数组中。

for {子句} yield {变量或表达式}

scala> val numrdd=sc.makeRDD(1 to 10,3)

numrdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[51] at makeRDD at <console>:25

scala> def sumn(iter:Iterator[Int])={val aa=for(i<-iter) yield i*2;aa.toIterator}

sumn: (iter: Iterator[Int])Iterator[Int]

scala> numrdd.mapPartitions(sumn).collect

res49: Array[Int] = Array(2, 4, 6, 8, 10, 12, 14, 16, 18, 20)

-----------------------------------------------

分区中的数值求和

scala> val numRDD=sc.makeRDD(1 to 10,3)
numRDD: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[210] at makeRDD at <console>:25

scala> numRDD.mapPartitions(x=>{val result=List(); var i=0;while(x.hasNext){i+=x.next()};result.::(i).toIterator}).collect
res136: Array[Int] = Array(6, 15, 34)

scala> numRDD.mapPartitions(x=>{

val result=List();

var i=0;

while(x.hasNext)

{

i+=x.next()

};

result.::(i).toIterator

}

).collect
res136: Array[Int] = Array(6, 15, 34)

-------------------------------------------------------------

scala> val numRDD=sc.makeRDD(1 to 10,3)

numRDD: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[4] at makeRDD at <console>:24

scala> def partionsum(iter:Iterator[Int])={var result=List[Int]();var i:Int= 0;while(iter.hasNext){var n:Int=iter.next; i += n;} ;result.::(i).toIterator}
partionsum: (iter: Iterator[Int])Iterator[Int]

scala> def partionsum(iter:Iterator[Int])={

var result=List[Int]();

var i:Int= 0;

while(iter.hasNext){

var n:Int=iter.next;

i += n;

} ;

result.::(i).toIterator

}
partionsum: (iter: Iterator[Int])Iterator[Int]

scala> numRDD.mapPartitions(partionsum).collect

res7: Array[Int] = Array(6, 15, 34)

--------------------------------------

分区内的数值进行求和,并展示分区号

scala> val numRDD=sc.makeRDD(1 to 10,3)

numRDD: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[4] at makeRDD at <console>:24

scala> numRDD.mapPartitionsWithIndex((x,iter)=>{val result=List(); var i=0;while(iter.hasNext){i+=iter.next()};result.::(x+"|"+i).toIterator}).collect
res138: Array[String] = Array(0|6, 1|15, 2|34)

scala> numRDD.mapPartitionsWithIndex((x,iter)=>{

val result=List();

var i=0;

while(iter.hasNext){

i+=iter.next()

};

result.::(x+"|"+i).toIterator

}).collect

res138: Array[String] = Array(0|6, 1|15, 2|34)

------------------------------

scala> val numRDD=sc.makeRDD(1 to 10,3)

numRDD: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[4] at makeRDD at <console>:24

scala> def partionwithindexsum(x:Int,iter:Iterator[Int])={var result=List[Int]();var i:Int= 0;while(iter.hasNext){var n:Int=iter.next; i += n;} ;result.::(x+"|"+i).toIterator} partionwithindexsum: (x: Int, iter: Iterator[Int])Iterator[Any]

scala> def partionwithindexsum(x:Int,iter:Iterator[Int])={

var result=List[Int]();

var i:Int= 0;

while(iter.hasNext){

var n:Int=iter.next;

i += n;

} ;

result.::(x+"|"+i).toIterator

}

partionwithindexsum: (x: Int, iter: Iterator[Int])Iterator[Any]

scala> numRDD.mapPartitionsWithIndex(partionwithindexsum).collect

res9: Array[Any] = Array(0|6, 1|15, 2|34)

----------------------

统计每个分区的元素数

scala> val numRDD=sc.makeRDD(1 to 10,3)

numRDD: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[4] at makeRDD at <console>:24

scala> def partionwithindexlength(x:Int,iter:Iterator[Int])={var result=List[Int]();var i:Int= iter.toList.length;result.::(x+"|"+i).toIterator}

partionwithindexlength: (x: Int, iter: Iterator[Int])Iterator[Any]

scala> def partionwithindexlength(x:Int,iter:Iterator[Int])={

var result=List[Int]();

var i:Int= iter.toList.length;

result.::(x+"|"+i).toIterator

}

partionwithindexlength: (x: Int, iter: Iterator[Int])Iterator[Any]

scala> numRDD.mapPartitionsWithIndex(partionwithindexlength).collect

res10: Array[Any] = Array(0|3, 1|3, 2|4)

mapPartitions的更多相关文章

  1. map与mapPartitions

    区别在于sc.map是将RDD下的所有行数据统计处理.而sc.mapPartitions是按RDD分区进行数据统计处理. 测试一下: val data = sc.parallelize(1 to 6, ...

  2. spark小技巧-mapPartitions

    与map方法类似,map是对rdd中的每一个元素进行操作,而mapPartitions(foreachPartition)则是对rdd中的每个分区的迭代器进行操作.如果在map过程中需要频繁创建额外的 ...

  3. spark中map与mapPartitions区别

    在spark中,map与mapPartitions两个函数都是比较常用,这里使用代码来解释一下两者区别 import org.apache.spark.{SparkConf, SparkContext ...

  4. Spark 学习笔记之 map/flatMap/filter/mapPartitions/mapPartitionsWithIndex/sample

    map/flatMap/filter/mapPartitions/mapPartitionsWithIndex/sample:

  5. spark map和mapPartitions的区别

    package dayo1 import org.apache.spark.{SparkConf, SparkContext} import scala.collection.mutable.Arra ...

  6. java实现spark常用算子之mapPartitions

    import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.a ...

  7. Spark API 之 map、mapPartitions、mapValues、flatMap、flatMapValues详解

    原文地址:https://blog.csdn.net/helloxiaozhe/article/details/80492933 1.创建一个RDD变量,通过help函数,查看相关函数定义和例子: & ...

  8. spark中map和mapPartitions算子的区别

    区别: 1.map是对rdd中每一个元素进行操作 2.mapPartitions是对rdd中每个partition的迭代器进行操作 mapPartitions优点: 1.若是普通map,比如一个par ...

  9. Spark算子--mapPartitions和mapPartitionsWithIndex

    mapPartitions--Transformation类算子 代码示例 result   mapPartitionsWithIndex--Transformation类算子 代码示例 result ...

随机推荐

  1. Java序列化的理解与学习

    1.什么是Java序列化 Java平台允许我们在内存中创建可复用的Java对象,但一般情况下,只有当JVM处于运行时,这些对象才可能存在,即,这些对象的生命周期不会比 JVM的生命周期更长.但在现实应 ...

  2. 【AMQ】之安装,启动,访问

    1.访问官网下载AMQ 2.解压下载包 windows直接找到系统对应的win32|win64 双击activemq.bat 即可 linux执行 ./activemq start 访问: AMQ默认 ...

  3. 【Graphite】Graphite常用函数使用

    使用Graphite进行sort排名 限制返回条数 aliasByNode(limit(sortByMaxima(summarize(EPIC.bm.00*.memory.memory.buffere ...

  4. 1049.(*) Counting Ones

    题意:题目大意:给出一个数字n,求1~n的所有数字里面出现1的个数 思路:转自(柳婼 の blog)遍历数字的低位到高位,设now为当前位的数字,left为now左边的所有数字构成的数字,right是 ...

  5. PAT 乙级 1046 划拳(15) C++版

    1046. 划拳(15) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue 划拳是古老中国酒文化的一个有趣的组成部分 ...

  6. console.log()换行和document.write()换行

    <!DOCTYPE html><html ><head><meta charset="utf-8"><title>ddd ...

  7. 廖雪峰Java2面向对象编程-4抽象类和接口-1抽象类

    每个子类都可以覆写父类的方法 如果父类的方法没有实际意义,能否去掉方法的执行语句?子类会报编译错误 如果去掉父类的方法,就失去了多态的特性 可以把父类的方法声明为抽象方法. 如果一个class定义了方 ...

  8. 时间同步chrony

          时间同步chrony [root@compute02 ~]# yum install chrony   编辑配置文件 将sever区块下的内容修改为时间服务器的地址 .此处可以写局域网内的 ...

  9. 倒数第N个字符串

    给定一个完全由小写英文字母组成的字符串等差递增序列,该序列中的每个字符串的长度固定为 L,从 L 个 a 开始,以 1 为步长递增.例如当 L 为 3 时,序列为 { aaa, aab, aac, . ...

  10. 00006 - Linux中使用export命令设置环境变量

    功能说明:设置或显示环境变量. #################################################################################### ...