Bomb Game

Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5647    Accepted Submission(s): 2036

Problem Description

Robbie is playing an interesting computer game. The game field is an unbounded 2-dimensional region. There are N rounds in the game. At each round, the computer will give Robbie two places, and Robbie should choose one of them to put a bomb. The explosion area of the bomb is a circle whose center is just the chosen place. Robbie can control the power of the bomb, that is, he can control the radius of each circle. A strange requirement is that there should be no common area for any two circles. The final score is the minimum radius of all the N circles.
Robbie has cracked the game, and he has known all the candidate places of each round before the game starts. Now he wants to know the maximum score he can get with the optimal strategy.
 

Input

The first line of each test case is an integer N (2 <= N <= 100), indicating the number of rounds. Then N lines follow. The i-th line contains four integers x1i, y1i, x2i, y2i, indicating that the coordinates of the two candidate places of the i-th round are (x1i, y1i) and (x2i, y2i). All the coordinates are in the range [-10000, 10000].
 

Output

Output one float number for each test case, indicating the best possible score. The result should be rounded to two decimal places.
 

Sample Input

2
1 1 1 -1
-1 -1 -1 1
2
1 1 -1 -1
1 -1 -1 1
 

Sample Output

1.41
1.00
 

Source

 
题意:每次给出两个点,选其中一点为圆心画圆,半径任意。n次以后,画了n个圆,要求任意两个圆不能相交,问最小圆的半径最大为多少。
思路:二分最小圆的半径。
     check方法:若a点和b点的距离小于2×半径,NOT a和b连边,NOT b和a连边。
         建图完毕后,强连通分量分解,2-SAT判断是否可行。
 //2017-08-27
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <iomanip>
#include <cmath> using namespace std; const int N = ;
const int M = N*N;
const double EPS = 1e-;
int head[N], rhead[N], tot, rtot;
struct Edge{
int to, next;
}edge[M], redge[M]; void init(){
tot = ;
rtot = ;
memset(head, -, sizeof(head));
memset(rhead, -, sizeof(rhead));
} void add_edge(int u, int v){
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++; redge[rtot].to = u;
redge[rtot].next = rhead[v];
rhead[v] = rtot++;
} vector<int> vs;//后序遍历顺序的顶点列表
bool vis[N];
int cmp[N];//所属强连通分量的拓扑序 //input: u 顶点
//output: vs 后序遍历顺序的顶点列表
void dfs(int u){
vis[u] = true;
for(int i = head[u]; i != -; i = edge[i].next){
int v = edge[i].to;
if(!vis[v])
dfs(v);
}
vs.push_back(u);
} //input: u 顶点编号; k 拓扑序号
//output: cmp[] 强连通分量拓扑序
void rdfs(int u, int k){
vis[u] = true;
cmp[u] = k;
for(int i = rhead[u]; i != -; i = redge[i].next){
int v = redge[i].to;
if(!vis[v])
rdfs(v, k);
}
} //Strongly Connected Component 强连通分量
//input: n 顶点个数
//output: k 强连通分量数;
int scc(int n){
memset(vis, , sizeof(vis));
vs.clear();
for(int u = ; u < n; u++)
if(!vis[u])
dfs(u);
int k = ;
memset(vis, , sizeof(vis));
for(int i = vs.size()-; i >= ; i--)
if(!vis[vs[i]])
rdfs(vs[i], k++);
return k;
} int n;
struct Point{
int x, y;
}point[N]; //input: 两个点
//output: 两点间距离
double distance(Point a, Point b){
return sqrt((double)(a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
} //input:radius 半径
//output:true 通过选取某些点可以得到radius的分数,false 无法得到radius的分数
bool check(double radius){
init();
for(int i = ; i < *n; i++){
for(int j = i+; j < *n; j++){
if((i^) == j)continue;
if(distance(point[i], point[j]) < *radius){//i与j存在矛盾
add_edge(i^, j);// NOT i -> j
add_edge(j^, i);// NOT j -> i
}
}
}
scc(*n);
for(int i = ; i < *n; i += ){
if(cmp[i] == cmp[i^])
return false;
}
return true;
} int main()
{
std::ios::sync_with_stdio(false);
//freopen("inputC.txt", "r", stdin);
while(cin>>n){
for(int i = ; i < n; i++){
cin>>point[*i].x>>point[*i].y>>point[*i+].x>>point[*i+].y;
}
double l = 0.0, r = 40000.0, mid, ans = ;
while(r-l > EPS){
mid = (l+r)/;
if(check(mid)){
ans = mid;
l = mid;
}else
r = mid;
}
cout.setf(ios::fixed);
cout<<setprecision()<<ans<<endl;
} return ;
}

HDU3622(二分+2-SAT)的更多相关文章

  1. hdu3622 二分+2sat

    题意:      给你N组炸弹,每组2个,让你在这N组里面选取N个放置,要求(1)每组只能也必须选取一个(2)炸弹与炸弹之间的半径相等(3)不能相互炸到对方.求最大的可放置半径. 思路:      二 ...

  2. hdu3622(二分+two-sat)

    传送门:Bomb Game 题意:给n对炸弹可以放置的位置(每个位置为一个二维平面上的点),每次放置炸弹是时只能选择这一对中的其中一个点,每个炸弹爆炸的范围半径都一样,控制爆炸的半径使得所有的爆炸范围 ...

  3. hdu3622 2-sat问题,二分+判断有无解即可。

    /*2-sat问题初破!题意:每一对炸弹只能选一个(明显2-sat),每个炸弹半径自定,爆炸范围不可 相交,求那个最小半径的最大值(每种策略的最小半径不同).思:最优解:必然是选择的点最近 的俩个距离 ...

  4. HDU3622 Bomb Game(二分+2-SAT)

    题意 给n对炸弹可以放置的位置(每个位置为一个二维平面上的点), 每次放置炸弹是时只能选择这一对中的其中一个点,每个炸弹爆炸 的范围半径都一样,控制爆炸的半径使得所有的爆炸范围都不相 交(可以相切), ...

  5. 2 - sat 模板(自用)

    2-sat一个变量两种状态符合条件的状态建边找强连通,两两成立1 - n 为第一状态(n + 1) - (n + n) 为第二状态 例题模板 链接一  POJ 3207 Ikki's Story IV ...

  6. 证明与计算(3): 二分决策图(Binary Decision Diagram, BDD)

    0x01 布尔代数(Boolean algebra) 大名鼎鼎鼎的stephen wolfram在2015年的时候写了一篇介绍George Boole的文章:George Boole: A 200-Y ...

  7. Map Labeler POJ - 2296(2 - sat 具体关系建边)

    题意: 给出n个点  让求这n个点所能建成的正方形的最大边长,要求不覆盖,且这n个点在正方形上或下边的中点位置 解析: 当然是二分,但建图就有点还行..比较难想..行吧...我太垃圾... 2 - s ...

  8. LA 3211 飞机调度(2—SAT)

    https://vjudge.net/problem/UVALive-3211 题意: 有n架飞机需要着陆,每架飞机都可以选择“早着陆”和“晚着陆”两种方式之一,且必须选择一种,第i架飞机的早着陆时间 ...

  9. UVALive - 3211 (2-SAT + 二分)

    layout: post title: 训练指南 UVALive - 3211 (2-SAT + 二分) author: "luowentaoaa" catalog: true m ...

随机推荐

  1. cad.net的undo返回操作

    这是提供给许多从lisp转移到c#的开发人员的一个函数,这个函数利用后绑代码实现undo返回操作. 本代码由edata提供: edata博客 /// <summary> /// 命令动作编 ...

  2. spring cloud学习(三) 断路器

    在Spring Cloud中使用了Hystrix 来实现断路器的功能.Hystrix是Netflix开源的微服务框架套件之一,该框架目标在于通过控制那些访问远程系统.服务和第三方库的节点,从而对延迟和 ...

  3. [转载]Java并发编程:深入剖析ThreadLocal

                原文地址:http://www.cnblogs.com/dolphin0520/p/3920407.html 想必很多朋友对ThreadLocal并不陌生,今天我们就来一起探讨 ...

  4. CSS3标签显示模式

    HTML标签一般分为块标签和行内标签两种类型,它们也称块元素和行内元素.具体如下: 块级元素(block-level) 每个块元素通常都会独自占据一整行或多整行,可以对其设置宽度.高度.对齐等属性,常 ...

  5. windows下docker的安装及常用命令学习

    docker search 镜像名 本文主要介绍Docker在Windows下的安装.关于Docker的介绍和文档在其官网中可以找到:http://www.docker.com .安装环境:Windo ...

  6. Java调用HTTPS接口的证书配置

    首先需要获取到证书文件. 然后,将证书导入到本地: keytool -import -noprompt -trustcacerts -alias <AliasName> -file < ...

  7. (转)WebSphere的web工程中怎么获取数据源

    原文:http://aguu125.iteye.com/blog/1694313 https://blog.csdn.net/bigtree_3721/article/details/44900325 ...

  8. C#基础篇三流程控制1

    using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace P01R ...

  9. vue代码上传服务器后背景图片404解决方法

    问题:代码上传服务器后,图片404,使用的font-awesome图标也是404 解决办法: 如果你用了vue-cil,那么在build目录下找到utils.js中的ExtractTextPlugin ...

  10. 解读Secondary NameNode的功能

    1.概述 最近有朋友问我Secondary NameNode的作用,是不是NameNode的备份?是不是为了防止NameNode的单点问题?确实,刚接触Hadoop,从字面上看,很容易会把Second ...