HDU3622(二分+2-SAT)
Bomb Game
Time Limit: 10000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5647 Accepted Submission(s): 2036
Problem Description
Robbie has cracked the game, and he has known all the candidate places of each round before the game starts. Now he wants to know the maximum score he can get with the optimal strategy.
Input
Output
Sample Input
1 1 1 -1
-1 -1 -1 1
2
1 1 -1 -1
1 -1 -1 1
Sample Output
1.00
Source
//2017-08-27
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <iomanip>
#include <cmath> using namespace std; const int N = ;
const int M = N*N;
const double EPS = 1e-;
int head[N], rhead[N], tot, rtot;
struct Edge{
int to, next;
}edge[M], redge[M]; void init(){
tot = ;
rtot = ;
memset(head, -, sizeof(head));
memset(rhead, -, sizeof(rhead));
} void add_edge(int u, int v){
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++; redge[rtot].to = u;
redge[rtot].next = rhead[v];
rhead[v] = rtot++;
} vector<int> vs;//后序遍历顺序的顶点列表
bool vis[N];
int cmp[N];//所属强连通分量的拓扑序 //input: u 顶点
//output: vs 后序遍历顺序的顶点列表
void dfs(int u){
vis[u] = true;
for(int i = head[u]; i != -; i = edge[i].next){
int v = edge[i].to;
if(!vis[v])
dfs(v);
}
vs.push_back(u);
} //input: u 顶点编号; k 拓扑序号
//output: cmp[] 强连通分量拓扑序
void rdfs(int u, int k){
vis[u] = true;
cmp[u] = k;
for(int i = rhead[u]; i != -; i = redge[i].next){
int v = redge[i].to;
if(!vis[v])
rdfs(v, k);
}
} //Strongly Connected Component 强连通分量
//input: n 顶点个数
//output: k 强连通分量数;
int scc(int n){
memset(vis, , sizeof(vis));
vs.clear();
for(int u = ; u < n; u++)
if(!vis[u])
dfs(u);
int k = ;
memset(vis, , sizeof(vis));
for(int i = vs.size()-; i >= ; i--)
if(!vis[vs[i]])
rdfs(vs[i], k++);
return k;
} int n;
struct Point{
int x, y;
}point[N]; //input: 两个点
//output: 两点间距离
double distance(Point a, Point b){
return sqrt((double)(a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
} //input:radius 半径
//output:true 通过选取某些点可以得到radius的分数,false 无法得到radius的分数
bool check(double radius){
init();
for(int i = ; i < *n; i++){
for(int j = i+; j < *n; j++){
if((i^) == j)continue;
if(distance(point[i], point[j]) < *radius){//i与j存在矛盾
add_edge(i^, j);// NOT i -> j
add_edge(j^, i);// NOT j -> i
}
}
}
scc(*n);
for(int i = ; i < *n; i += ){
if(cmp[i] == cmp[i^])
return false;
}
return true;
} int main()
{
std::ios::sync_with_stdio(false);
//freopen("inputC.txt", "r", stdin);
while(cin>>n){
for(int i = ; i < n; i++){
cin>>point[*i].x>>point[*i].y>>point[*i+].x>>point[*i+].y;
}
double l = 0.0, r = 40000.0, mid, ans = ;
while(r-l > EPS){
mid = (l+r)/;
if(check(mid)){
ans = mid;
l = mid;
}else
r = mid;
}
cout.setf(ios::fixed);
cout<<setprecision()<<ans<<endl;
} return ;
}
HDU3622(二分+2-SAT)的更多相关文章
- hdu3622 二分+2sat
题意: 给你N组炸弹,每组2个,让你在这N组里面选取N个放置,要求(1)每组只能也必须选取一个(2)炸弹与炸弹之间的半径相等(3)不能相互炸到对方.求最大的可放置半径. 思路: 二 ...
- hdu3622(二分+two-sat)
传送门:Bomb Game 题意:给n对炸弹可以放置的位置(每个位置为一个二维平面上的点),每次放置炸弹是时只能选择这一对中的其中一个点,每个炸弹爆炸的范围半径都一样,控制爆炸的半径使得所有的爆炸范围 ...
- hdu3622 2-sat问题,二分+判断有无解即可。
/*2-sat问题初破!题意:每一对炸弹只能选一个(明显2-sat),每个炸弹半径自定,爆炸范围不可 相交,求那个最小半径的最大值(每种策略的最小半径不同).思:最优解:必然是选择的点最近 的俩个距离 ...
- HDU3622 Bomb Game(二分+2-SAT)
题意 给n对炸弹可以放置的位置(每个位置为一个二维平面上的点), 每次放置炸弹是时只能选择这一对中的其中一个点,每个炸弹爆炸 的范围半径都一样,控制爆炸的半径使得所有的爆炸范围都不相 交(可以相切), ...
- 2 - sat 模板(自用)
2-sat一个变量两种状态符合条件的状态建边找强连通,两两成立1 - n 为第一状态(n + 1) - (n + n) 为第二状态 例题模板 链接一 POJ 3207 Ikki's Story IV ...
- 证明与计算(3): 二分决策图(Binary Decision Diagram, BDD)
0x01 布尔代数(Boolean algebra) 大名鼎鼎鼎的stephen wolfram在2015年的时候写了一篇介绍George Boole的文章:George Boole: A 200-Y ...
- Map Labeler POJ - 2296(2 - sat 具体关系建边)
题意: 给出n个点 让求这n个点所能建成的正方形的最大边长,要求不覆盖,且这n个点在正方形上或下边的中点位置 解析: 当然是二分,但建图就有点还行..比较难想..行吧...我太垃圾... 2 - s ...
- LA 3211 飞机调度(2—SAT)
https://vjudge.net/problem/UVALive-3211 题意: 有n架飞机需要着陆,每架飞机都可以选择“早着陆”和“晚着陆”两种方式之一,且必须选择一种,第i架飞机的早着陆时间 ...
- UVALive - 3211 (2-SAT + 二分)
layout: post title: 训练指南 UVALive - 3211 (2-SAT + 二分) author: "luowentaoaa" catalog: true m ...
随机推荐
- 微信小程序如何跳转到另一个小程序
微信小程序如何跳转到另一个小程序,要注意:在app.json文件里也要配置 navigateToMiniProgramAppIdList,如下图: "navigateToMiniProgra ...
- 友链&&日记
上面友链,下面日记 友人链 最喜欢galgameの加藤聚聚 初三一本&&\(ACG\)姿势比我还丰厚的yx巨巨 更喜欢galgame的shadowice czx ZigZag胖胖 文文 ...
- C# SqlHelper类的数据库操作
#region 私有构造函数和方法 private SqlHelper() { } /// <summary> /// 将SqlParameter参数数组(参数值)分配给SqlComman ...
- 12-02 java String类
String构造方法 package cn.itcast_01; /* * 字符串:就是由多个字符组成的一串数据.也可以看成是一个字符数组. * 通过查看API,我们可以知道 * A:字符串字面值&q ...
- odoo开发笔记 -- odoo10 视图界面根据字段状态,动态隐藏创建&编辑按钮
场景描述: 解决方式: 网络搜索,vnsoft_form_hide_edit 找到了这个odoo8的模块, odoo10语法和视图界面有新的变化,所以需要修改一些地方,感兴趣的小伙伴可以对比下两个代码 ...
- 常用处理数据用法es6 语法糖总结
一 循环(数组 ,集合) 1 forEach-----------可以遍历得到vaue和index const arr = ['red', 'green', 'blue'];arr.forEa ...
- How To Crop Bitmap For UWP
裁剪图片主要是借助于 BitmapDecoder.GetPixelDataAsync() 以及 BitmapTransform对象来实现. 实现的代码如下: using System; using S ...
- ubuntu安转QTcreator出现The default mkspec symlink is broken
QT Creator安装:https://blog.csdn.net/arackethis/article/details/42326967 QT SDK安装:https://blog.csdn.ne ...
- inotify监听文件夹的变动
inotify只能监控单层目录变化,不能监控子目录中的变化情况.如果需要监控子目录,需要在调用inotify_add_watch(int fd, char *dir, int mask):int建立监 ...
- spring boot + mybatis + druid + redis
接上篇,使用redis做缓存 新建spring boot 工程,添加pom引用 <dependency> <groupId>org.springframework.boot&l ...