Layout
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 11612   Accepted: 5550

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).

Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD.

Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.

Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample:

There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.

The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

题意:有n头牛按编号顺序站一排,即每头牛都有一个一维坐标,可以相同。现在有一些牛之间有关系,关系好的a,b必须距离小于等于dl;关系不好的a,b必须距离大于等于dd。求牛1和牛n的最大距离。
思路:最短路问题:<u,v> d[u]+d>=d[v]。
n头牛按编号顺序站一排,则d[i+1]>=d[i],即编号大的牛的坐标大于等于编号小的牛。关系好的牛a,牛b,则d[a]+d>=d[b];关系不好的牛a,牛b,则d[a]+d<=d[b],即d[b]+(-d)>=d[a]。求约束下的最大距离。最短路也可以理解为约束下的最大解。
因为存在负权值,所以有可能存在负权值回路,所以dijkstra算法不能使用,直接使用ford算法。存在负权值回路输出-1,d[n]=inf输出-2,其他情况直接输出d[n]。
代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<map>
#include<queue>
#include<stack>
#include<vector>
#include<set>
using namespace std;
typedef pair<int,int> P;
typedef long long ll;
const int maxn=1e5+,inf=0x3f3f3f3f,mod=1e9+;
const ll INF=1e13+;
struct edge
{
int from,to;
int cost;
};
int cou=;
edge es[maxn];
vector<edge>G[maxn];
int used[maxn];
priority_queue<P,vector<P>,greater<P> >que;
void addedge(int u,int v,int w)
{
cou++;
edge e;
e.from=u,e.to=v,e.cost=w;
es[cou].from=u,es[cou].to=v,es[cou].cost=w;
G[u].push_back(e);
}
int n,ml,md;
int al[maxn],bl[maxn],dl[maxn];
int ad[maxn],bd[maxn],dd[maxn];
int d[maxn];
void ford()
{
for(int i=; i<=n; i++) d[i]=inf;
d[]=;
for(int t=; t<n; t++)
{
for(int i=; i<n; i++)
if(d[i+]<inf) d[i]=min(d[i],d[i+]);
for(int i=; i<=ml; i++)
if(d[al[i]]<inf) d[bl[i]]=min(d[bl[i]],d[al[i]]+dl[i]);
for(int i=; i<=md; i++)
if(d[bd[i]]<inf) d[ad[i]]=min(d[ad[i]],d[bd[i]]-dd[i]);
}
if(d[]<) cout<<-<<endl;
else if(d[n]>=inf) cout<<-<<endl;
else cout<<d[n]<<endl;
}
int main()
{
int a,b,d;
scanf("%d%d%d",&n,&ml,&md);
for(int i=; i<n; i++) addedge(i+,i,);
for(int i=; i<=ml; i++)
scanf("%d%d%d",&al[i],&bl[i],&dl[i]);
for(int i=; i<=md; i++)
scanf("%d%d%d",&ad[i],&bd[i],&dd[i]);
ford();
return ;
}
/*
4 3 0
1 3 10
2 4 20
2 3 3
*/

最短路

POJ 3169.Layout 最短路的更多相关文章

  1. poj 3169 Layout (差分约束)

    3169 -- Layout 继续差分约束. 这题要判起点终点是否连通,并且要判负环,所以要用到spfa. 对于ML的边,要求两者之间距离要小于给定值,于是构建(a)->(b)=c的边.同理,对 ...

  2. poj 3169 Layout(线性差分约束,spfa:跑最短路+判断负环)

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15349   Accepted: 7379 Descripti ...

  3. POJ 3169 Layout(差分约束+最短路)题解

    题意:有一串数字1~n,按顺序排序,给两种要求,一是给定u,v保证pos[v] - pos[u] <= w:二是给定u,v保证pos[v] - pos[u] >= w.求pos[n] - ...

  4. POJ 3169 Layout(差分约束啊)

    题目链接:http://poj.org/problem? id=3169 Description Like everyone else, cows like to stand close to the ...

  5. POJ 3169 Layout (spfa+差分约束)

    题目链接:http://poj.org/problem?id=3169 差分约束的解释:http://www.cnblogs.com/void/archive/2011/08/26/2153928.h ...

  6. POJ 3169 Layout (HDU 3592) 差分约束

    http://poj.org/problem?id=3169 http://acm.hdu.edu.cn/showproblem.php?pid=3592 题目大意: 一些母牛按序号排成一条直线.有两 ...

  7. poj 3169 Layout(差分约束+spfa)

    题目链接:http://poj.org/problem?id=3169 题意:n头牛编号为1到n,按照编号的顺序排成一列,每两头牛的之间的距离 >= 0.这些牛的距离存在着一些约束关系:1.有m ...

  8. poj 3169 Layout

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8610   Accepted: 4147 Descriptio ...

  9. POJ 3169 Layout (spfa+差分约束)

    题目链接:http://poj.org/problem?id=3169 题目大意:n头牛,按编号1~n从左往右排列,可以多头牛站在同一个点,给出ml行条件,每行三个数a b c表示dis[b]-dis ...

随机推荐

  1. C 中的typedef应用

    1. typedef  声明的新的类型名在变量名的位置出现. example: typedef unsigned int UINT 则 unsigned int a; 相当于 UINT A; 2. t ...

  2. flexible

    https://www.w3cplus.com/mobile/lib-flexible-for-html5-layout.html

  3. Bootstrap的aria-label和aria-labelledby

    [Bootstrap的aria-label和aria-labelledby] 用于盲人阅读的属性,基本也没什么用. 参考:http://blog.csdn.net/liuyan19891230/art ...

  4. linux suse 同步时间

    ntpdate 210.72.145.44 ip为中国(国家授时中心)

  5. Android的框架功能说明

    OkHttp网络框架 Picasso图片缓存框架 ORMLite数据库框架 GreenDao数据库框架

  6. oracle 的查询问题!!!

    问题: declare aaa integer;email varchar2(100) :='1234@aa.com';begin select count(*) into aaa from dual ...

  7. java面试题:jvm

    jvm内存区域 Q:jvm内存怎么划分的? 答: 方法区(线程共享):各个线程共享的一个区域,用于存储虚拟机加载的类信息.常量.静态变量.即时编译器编译后的代码等数据.虽然 Java 虚拟机规范把方法 ...

  8. cdh 5.13 centos6.9安装

    1.所有节点准备工作 1).关闭防火墙 2).关闭selinux 并重启系统 3).建立NTP服务器,所有数据节点每天定时同步时间. 主节点在ntp.conf中增加 restrict 192.168. ...

  9. 2019年华南理工大学程序设计竞赛(春季赛)-C-六学家的困惑

    题目链接:https://ac.nowcoder.com/acm/contest/625/C 题意:给定两个字符串,每次只能从两个字符串的两端取字符,求依次取字符后所构成的数字最大为多少. 思路:思路 ...

  10. Python compile() 函数

    Python compile() 函数  Python 内置函数 描述 compile() 函数将一个字符串编译为字节代码. 语法 以下是 compile() 方法的语法: compile(sourc ...