POJ 3169.Layout 最短路
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 11612 | Accepted: 5550 |
Description
Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.
Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.
Input
Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.
Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.
Output
Sample Input
4 2 1
1 3 10
2 4 20
2 3 3
Sample Output
27
Hint
There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.
The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<map>
#include<queue>
#include<stack>
#include<vector>
#include<set>
using namespace std;
typedef pair<int,int> P;
typedef long long ll;
const int maxn=1e5+,inf=0x3f3f3f3f,mod=1e9+;
const ll INF=1e13+;
struct edge
{
int from,to;
int cost;
};
int cou=;
edge es[maxn];
vector<edge>G[maxn];
int used[maxn];
priority_queue<P,vector<P>,greater<P> >que;
void addedge(int u,int v,int w)
{
cou++;
edge e;
e.from=u,e.to=v,e.cost=w;
es[cou].from=u,es[cou].to=v,es[cou].cost=w;
G[u].push_back(e);
}
int n,ml,md;
int al[maxn],bl[maxn],dl[maxn];
int ad[maxn],bd[maxn],dd[maxn];
int d[maxn];
void ford()
{
for(int i=; i<=n; i++) d[i]=inf;
d[]=;
for(int t=; t<n; t++)
{
for(int i=; i<n; i++)
if(d[i+]<inf) d[i]=min(d[i],d[i+]);
for(int i=; i<=ml; i++)
if(d[al[i]]<inf) d[bl[i]]=min(d[bl[i]],d[al[i]]+dl[i]);
for(int i=; i<=md; i++)
if(d[bd[i]]<inf) d[ad[i]]=min(d[ad[i]],d[bd[i]]-dd[i]);
}
if(d[]<) cout<<-<<endl;
else if(d[n]>=inf) cout<<-<<endl;
else cout<<d[n]<<endl;
}
int main()
{
int a,b,d;
scanf("%d%d%d",&n,&ml,&md);
for(int i=; i<n; i++) addedge(i+,i,);
for(int i=; i<=ml; i++)
scanf("%d%d%d",&al[i],&bl[i],&dl[i]);
for(int i=; i<=md; i++)
scanf("%d%d%d",&ad[i],&bd[i],&dd[i]);
ford();
return ;
}
/*
4 3 0
1 3 10
2 4 20
2 3 3
*/
最短路
POJ 3169.Layout 最短路的更多相关文章
- poj 3169 Layout (差分约束)
3169 -- Layout 继续差分约束. 这题要判起点终点是否连通,并且要判负环,所以要用到spfa. 对于ML的边,要求两者之间距离要小于给定值,于是构建(a)->(b)=c的边.同理,对 ...
- poj 3169 Layout(线性差分约束,spfa:跑最短路+判断负环)
Layout Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 15349 Accepted: 7379 Descripti ...
- POJ 3169 Layout(差分约束+最短路)题解
题意:有一串数字1~n,按顺序排序,给两种要求,一是给定u,v保证pos[v] - pos[u] <= w:二是给定u,v保证pos[v] - pos[u] >= w.求pos[n] - ...
- POJ 3169 Layout(差分约束啊)
题目链接:http://poj.org/problem? id=3169 Description Like everyone else, cows like to stand close to the ...
- POJ 3169 Layout (spfa+差分约束)
题目链接:http://poj.org/problem?id=3169 差分约束的解释:http://www.cnblogs.com/void/archive/2011/08/26/2153928.h ...
- POJ 3169 Layout (HDU 3592) 差分约束
http://poj.org/problem?id=3169 http://acm.hdu.edu.cn/showproblem.php?pid=3592 题目大意: 一些母牛按序号排成一条直线.有两 ...
- poj 3169 Layout(差分约束+spfa)
题目链接:http://poj.org/problem?id=3169 题意:n头牛编号为1到n,按照编号的顺序排成一列,每两头牛的之间的距离 >= 0.这些牛的距离存在着一些约束关系:1.有m ...
- poj 3169 Layout
Layout Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8610 Accepted: 4147 Descriptio ...
- POJ 3169 Layout (spfa+差分约束)
题目链接:http://poj.org/problem?id=3169 题目大意:n头牛,按编号1~n从左往右排列,可以多头牛站在同一个点,给出ml行条件,每行三个数a b c表示dis[b]-dis ...
随机推荐
- SPSS-判别分析
判别分析 判别分析是一种有效的对个案进行分类分析的方法.和聚类分析不同的是,判别分析时组别的特征已知. 定义:判别分析先根据已知类别的事物的性质,利用某种技术建立函数式,然后对未知类别的新事物进 行判 ...
- 详解 Tomcat 的连接数与线程池
前言 在使用tomcat时,经常会遇到连接数.线程数之类的配置问题,要真正理解这些概念,必须先了解Tomcat的连接器(Connector). 在前面的文章 详解Tomcat配置文件server. ...
- 自定义sql server 聚合涵数
using System; using System.Data; using System.Data.SqlClient; using System.Data.SqlTypes; using Micr ...
- 解题5(StringMerge1)
题目描述 按照指定规则对输入的字符串进行处理. 详细描述: 将输入的两个字符串合并. 对合并后的字符串进行排序,要求为:下标为奇数的字符和下标为偶数的字符分别从小到大排序.这里的下标意思是字符在字符串 ...
- 在 Android Studio 上调试数据库 ( SQLite ) (转)
转自:http://c.colabug.com/thread-1781696-1-1.html 以前 Eclipse 时代,调试 SQLite 都是将数据库文件导出到电脑,然后再用软件打开查看.现在我 ...
- GIRDVIEW 控件绑定数据后 后台c#控制隐藏某列
gv_EnterpriseInfo.DataSource = pageResult.Data; gv_EnterpriseInfo.DataBind(); 之后加判断条件: if (true) { g ...
- http://218.245.4.98:20000/phpmyadmin:2018SCTF--easiest web - phpmyadmin
SCTF的web最简单题,好难好难好难. 直接进去就是PHPmyadmin界面(即mysql的网页界面),需要登录密码,这个我当时没有破解出来,谁知道账号密码是root/root咩,要是 ...
- CTF题-http://120.24.86.145:8002/flagphp/:Bugku----flag.php
今天做了一道关于序列化的题目,收益颇多,愉快地开始. 首先,提示了“hint”,所以尝试加入hint参数.这儿没啥好说的,最后hint=1显示了重点内容.如下图所示 没错,是金灿灿的网页代码,开心,仔 ...
- Django具体操作(三)
理解表单类:上一篇中讲到了用户登录代码实现,用户登录框可以用HTML代码实现或者是表单实现. 在.个人的app下创建forms.py(这里很多人会写成from) 这个文件是专门存放各种与表单有关的类. ...
- 随机数、方法重载和System.out.println()的理解
1.编写一个方法,使用以上算法生成指定数目(比如1000个)的随机数. package testradom; public class testradom { public static void m ...