Layout
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 11612   Accepted: 5550

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).

Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD.

Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.

Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample:

There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.

The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

题意:有n头牛按编号顺序站一排,即每头牛都有一个一维坐标,可以相同。现在有一些牛之间有关系,关系好的a,b必须距离小于等于dl;关系不好的a,b必须距离大于等于dd。求牛1和牛n的最大距离。
思路:最短路问题:<u,v> d[u]+d>=d[v]。
n头牛按编号顺序站一排,则d[i+1]>=d[i],即编号大的牛的坐标大于等于编号小的牛。关系好的牛a,牛b,则d[a]+d>=d[b];关系不好的牛a,牛b,则d[a]+d<=d[b],即d[b]+(-d)>=d[a]。求约束下的最大距离。最短路也可以理解为约束下的最大解。
因为存在负权值,所以有可能存在负权值回路,所以dijkstra算法不能使用,直接使用ford算法。存在负权值回路输出-1,d[n]=inf输出-2,其他情况直接输出d[n]。
代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<map>
#include<queue>
#include<stack>
#include<vector>
#include<set>
using namespace std;
typedef pair<int,int> P;
typedef long long ll;
const int maxn=1e5+,inf=0x3f3f3f3f,mod=1e9+;
const ll INF=1e13+;
struct edge
{
int from,to;
int cost;
};
int cou=;
edge es[maxn];
vector<edge>G[maxn];
int used[maxn];
priority_queue<P,vector<P>,greater<P> >que;
void addedge(int u,int v,int w)
{
cou++;
edge e;
e.from=u,e.to=v,e.cost=w;
es[cou].from=u,es[cou].to=v,es[cou].cost=w;
G[u].push_back(e);
}
int n,ml,md;
int al[maxn],bl[maxn],dl[maxn];
int ad[maxn],bd[maxn],dd[maxn];
int d[maxn];
void ford()
{
for(int i=; i<=n; i++) d[i]=inf;
d[]=;
for(int t=; t<n; t++)
{
for(int i=; i<n; i++)
if(d[i+]<inf) d[i]=min(d[i],d[i+]);
for(int i=; i<=ml; i++)
if(d[al[i]]<inf) d[bl[i]]=min(d[bl[i]],d[al[i]]+dl[i]);
for(int i=; i<=md; i++)
if(d[bd[i]]<inf) d[ad[i]]=min(d[ad[i]],d[bd[i]]-dd[i]);
}
if(d[]<) cout<<-<<endl;
else if(d[n]>=inf) cout<<-<<endl;
else cout<<d[n]<<endl;
}
int main()
{
int a,b,d;
scanf("%d%d%d",&n,&ml,&md);
for(int i=; i<n; i++) addedge(i+,i,);
for(int i=; i<=ml; i++)
scanf("%d%d%d",&al[i],&bl[i],&dl[i]);
for(int i=; i<=md; i++)
scanf("%d%d%d",&ad[i],&bd[i],&dd[i]);
ford();
return ;
}
/*
4 3 0
1 3 10
2 4 20
2 3 3
*/

最短路

POJ 3169.Layout 最短路的更多相关文章

  1. poj 3169 Layout (差分约束)

    3169 -- Layout 继续差分约束. 这题要判起点终点是否连通,并且要判负环,所以要用到spfa. 对于ML的边,要求两者之间距离要小于给定值,于是构建(a)->(b)=c的边.同理,对 ...

  2. poj 3169 Layout(线性差分约束,spfa:跑最短路+判断负环)

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15349   Accepted: 7379 Descripti ...

  3. POJ 3169 Layout(差分约束+最短路)题解

    题意:有一串数字1~n,按顺序排序,给两种要求,一是给定u,v保证pos[v] - pos[u] <= w:二是给定u,v保证pos[v] - pos[u] >= w.求pos[n] - ...

  4. POJ 3169 Layout(差分约束啊)

    题目链接:http://poj.org/problem? id=3169 Description Like everyone else, cows like to stand close to the ...

  5. POJ 3169 Layout (spfa+差分约束)

    题目链接:http://poj.org/problem?id=3169 差分约束的解释:http://www.cnblogs.com/void/archive/2011/08/26/2153928.h ...

  6. POJ 3169 Layout (HDU 3592) 差分约束

    http://poj.org/problem?id=3169 http://acm.hdu.edu.cn/showproblem.php?pid=3592 题目大意: 一些母牛按序号排成一条直线.有两 ...

  7. poj 3169 Layout(差分约束+spfa)

    题目链接:http://poj.org/problem?id=3169 题意:n头牛编号为1到n,按照编号的顺序排成一列,每两头牛的之间的距离 >= 0.这些牛的距离存在着一些约束关系:1.有m ...

  8. poj 3169 Layout

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8610   Accepted: 4147 Descriptio ...

  9. POJ 3169 Layout (spfa+差分约束)

    题目链接:http://poj.org/problem?id=3169 题目大意:n头牛,按编号1~n从左往右排列,可以多头牛站在同一个点,给出ml行条件,每行三个数a b c表示dis[b]-dis ...

随机推荐

  1. SPSS-判别分析

    判别分析 判别分析是一种有效的对个案进行分类分析的方法.和聚类分析不同的是,判别分析时组别的特征已知. 定义:判别分析先根据已知类别的事物的性质,利用某种技术建立函数式,然后对未知类别的新事物进 行判 ...

  2. 详解 Tomcat 的连接数与线程池

      前言 在使用tomcat时,经常会遇到连接数.线程数之类的配置问题,要真正理解这些概念,必须先了解Tomcat的连接器(Connector). 在前面的文章 详解Tomcat配置文件server. ...

  3. 自定义sql server 聚合涵数

    using System; using System.Data; using System.Data.SqlClient; using System.Data.SqlTypes; using Micr ...

  4. 解题5(StringMerge1)

    题目描述 按照指定规则对输入的字符串进行处理. 详细描述: 将输入的两个字符串合并. 对合并后的字符串进行排序,要求为:下标为奇数的字符和下标为偶数的字符分别从小到大排序.这里的下标意思是字符在字符串 ...

  5. 在 Android Studio 上调试数据库 ( SQLite ) (转)

    转自:http://c.colabug.com/thread-1781696-1-1.html 以前 Eclipse 时代,调试 SQLite 都是将数据库文件导出到电脑,然后再用软件打开查看.现在我 ...

  6. GIRDVIEW 控件绑定数据后 后台c#控制隐藏某列

    gv_EnterpriseInfo.DataSource = pageResult.Data; gv_EnterpriseInfo.DataBind(); 之后加判断条件: if (true) { g ...

  7. http://218.245.4.98:20000/phpmyadmin:2018SCTF--easiest web - phpmyadmin

      SCTF的web最简单题,好难好难好难.      直接进去就是PHPmyadmin界面(即mysql的网页界面),需要登录密码,这个我当时没有破解出来,谁知道账号密码是root/root咩,要是 ...

  8. CTF题-http://120.24.86.145:8002/flagphp/:Bugku----flag.php

    今天做了一道关于序列化的题目,收益颇多,愉快地开始. 首先,提示了“hint”,所以尝试加入hint参数.这儿没啥好说的,最后hint=1显示了重点内容.如下图所示 没错,是金灿灿的网页代码,开心,仔 ...

  9. Django具体操作(三)

    理解表单类:上一篇中讲到了用户登录代码实现,用户登录框可以用HTML代码实现或者是表单实现. 在.个人的app下创建forms.py(这里很多人会写成from) 这个文件是专门存放各种与表单有关的类. ...

  10. 随机数、方法重载和System.out.println()的理解

    1.编写一个方法,使用以上算法生成指定数目(比如1000个)的随机数. package testradom; public class testradom { public static void m ...