题目大意:给定 N 种不同种类的硬币,每种硬币的重量范围在一个可变区间内,但是价值恒定,求给定一个重量 W,求有多少种面值不同的组合方式。

题解:如果硬币的重量恒定,那么就是一道裸的完全背包问题。因此,可以先将给定的硬币拆分成多个重量不同的硬币。

总的来说,这道题所求的是目标状态有多少种可能的解,而不是最优解,因此有以下两种方式。

解法1:在每个状态中维护一个 \(STL--set\),用来存储到达该状态所有可能的值,最后输出集合的大小即可,常数较大。

解法2:将问题转化为判定性问题,即:额外增加一维用来表示当前可能的价值。

代码 1 如下

#include <bits/stdc++.h>
using namespace std; int w,n,ans,val[300],cost[300],tot;
set<int> dp[110]; void read_and_parse(){
scanf("%d%d",&w,&n);
for(int i=1,v,mi,mx;i<=n;i++){
scanf("%d%d%d",&v,&mi,&mx);
for(int j=mi;j<=mx;j++)cost[++tot]=j,val[tot]=v;
}
} void solve(){
dp[0].insert(0);
for(int i=1;i<=tot;i++)
for(int j=cost[i];j<=w;j++)
for(set<int>::iterator p=dp[j-cost[i]].begin();p!=dp[j-cost[i]].end();p++)
dp[j].insert(*p+val[i]);
printf("%d\n",dp[w].size());
} int main(){
read_and_parse();
solve();
return 0;
}

代码 2 如下

#include <bits/stdc++.h>
using namespace std; int w,n,ans,val[300],cost[300],tot,dp[110][2510]; void read_and_parse(){
scanf("%d%d",&w,&n);
for(int i=1,v,mi,mx;i<=n;i++){
scanf("%d%d%d",&v,&mi,&mx);
for(int j=mi;j<=mx;j++)cost[++tot]=j,val[tot]=v;
}
} void solve(){
dp[0][0]=1;
for(int i=1;i<=tot;i++)
for(int j=cost[i];j<=w;j++)
for(int k=val[i];k<=2500;k++)
dp[j][k]|=dp[j-cost[i]][k-val[i]];
for(int i=0;i<=2500;i++)if(dp[w][i])++ans;
printf("%d\n",ans);
} int main(){
read_and_parse();
solve();
return 0;
}

【codevs1297】硬币 完全背包的更多相关文章

  1. codevs1297 硬币(背包dp,方案数)

    1297 硬币  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold   题目描述 Description 我们知道即使是同一种面值的硬币,它们的重量也有可能不一样, ...

  2. BZOJ 1042: [HAOI2008]硬币购物( 背包dp + 容斥原理 )

    先按完全背包做一次dp, dp(x)表示x元的东西有多少种方案, 然后再容斥一下. ---------------------------------------------------------- ...

  3. bzoj1708:[Usaco2007 Oct]Money奶牛的硬币(完全背包

    1708: [Usaco2007 Oct]Money奶牛的硬币 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 797  Solved: 540[Submi ...

  4. BZOJ 1042 硬币购物(背包DP+容斥原理)

    可以看出这是个多重背包,运用单调队列优化可以使每次询问达到O(s).这样总复杂度为O(s*tot). 会TLE. 因为改题的特殊性,每个硬币的币值是不变的,变的只是每次询问的硬币个数. 我们不妨不考虑 ...

  5. Luogu P1450 [HAOI2008]硬币购物 背包+容斥原理

    考虑如果没有个数的限制,那么就是一个完全背包,所以先跑一个完全背包,求出没有个数限制的方案数即可. 因为有个数的限制,所以容斥一下:没有1个超过限制的方案=至少0个超过限制-至少1个超过限制+至少2个 ...

  6. 洛谷P1450 [HAOI2008]硬币购物 背包+容斥

    无限背包+容斥? 观察数据范围,可重背包无法通过,假设没有数量限制,利用用无限背包 进行预处理,因为实际硬币数有限,考虑减掉多加的部分 如何减?利用容斥原理,减掉不符合第一枚硬币数的,第二枚,依次类推 ...

  7. [Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥

    题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包 ...

  8. codevs1297 硬币

    1297 硬币   题目描述 Description 我们知道即使是同一种面值的硬币,它们的重量也有可能不一样,因为它受到许多因素的影响,包括制造工艺和流程上的.但是任何一种面值的硬币的重量总是处于某 ...

  9. poj1742硬币——多重背包可行性

    题目:http://poj.org/problem?id=1742 贪心地想,1.如果一种面值已经可以被组成,则不再对它更新: 2.对于同一种面值的硬币,尽量用较少硬币(一个)更新,使后面可以用更多此 ...

随机推荐

  1. 20155217《网络对抗》Exp05 MSF基础应用

    20155217<网络对抗>Exp05 MSF基础应用 实践内容 本实践目标是掌握metasploit的基本应用方式,重点常用的三种攻击方式的思路.具体需要完成: 一个主动攻击实践,如ms ...

  2. 20155223 Exp2 后门原理与实践

    20155223 Exp2 后门原理与实践 实验预热 一.windows获取Linux shell Windows:使用 ipconfig 命令查看当前机器IP地址. 进入ncat所在文件地址,输入命 ...

  3. 20155333 《网络对抗》Exp2 后门原理与实践

    20155333 <网络对抗>Exp2 后门原理与实践 1.例举你能想到的一个后门进入到你系统中的可能方式? 下载的软件中捆绑有后门: 浏览的网页或其上的小广告: 有些网页会自动安装软件. ...

  4. 20155338《网络对抗》Exp3 免杀原理与实践

    20155338<网络对抗>Exp3 免杀原理与实践 实验过程 一.免杀效果参考基准 Kali使用上次实验msfvenom产生后门的可执行文件,上传到老师提供的网址http://www.v ...

  5. 汇编 MOVSX与MOVZX 指令

    知识点:  MOVSX符号扩展传送  MOVZX零扩展传送 一.MOVSX与MOVZX格式 MOVSX 操作数A ,操作数B MOVZX 操作数A ,操作数B 相同点:操作数B 空间必须小于 操作 ...

  6. PS官方正式中文版(搬砖分享)

    https://pan.baidu.com/s/1c3IdQq0 PS官方正式中文版(搬砖分享) 注意事项: 1.安装开始前请先断网,在成功破解激活前请全程断网: 2.安装完成后先试运行软件一次,然后 ...

  7. ffmpeg sox 音频转换 MP3 转 wav

    转自:https://blog.csdn.net/xiaoshulf/article/details/78657172 1 windows 下 mp3 文件和 wav 文件的 转换 实现代码: 1 f ...

  8. [T-ARA][내가 너무 아파][我很痛]

    歌词来源:http://music.163.com/#/song?id=5402882 作曲 : 新沙洞老虎/崔圭成 [作曲 : 新沙洞老虎/崔圭成] 作词 : 新沙洞老虎/崔圭成 [作词 : 新沙洞 ...

  9. 每日scrum(5)

    进入冲刺第五天,软件的界面设计成为主打,收集学校的很多美图是我们组的任务: 问题在于软件已很难有很大的改进,大方向也都是变不了的 任务看板: 燃尽图:

  10. 腾讯云申请的64位ubuntu服务器配置php环境

    腾讯云申请的64位ubuntu服务器配置php环境 一.首先还是安装Lamp组合 Linux+Apache+Mysql+php 直接命令 sudo apt-get install apache2 su ...