【codevs1297】硬币 完全背包
题目大意:给定 N 种不同种类的硬币,每种硬币的重量范围在一个可变区间内,但是价值恒定,求给定一个重量 W,求有多少种面值不同的组合方式。
题解:如果硬币的重量恒定,那么就是一道裸的完全背包问题。因此,可以先将给定的硬币拆分成多个重量不同的硬币。
总的来说,这道题所求的是目标状态有多少种可能的解,而不是最优解,因此有以下两种方式。
解法1:在每个状态中维护一个 \(STL--set\),用来存储到达该状态所有可能的值,最后输出集合的大小即可,常数较大。
解法2:将问题转化为判定性问题,即:额外增加一维用来表示当前可能的价值。
代码 1 如下
#include <bits/stdc++.h>
using namespace std;
int w,n,ans,val[300],cost[300],tot;
set<int> dp[110];
void read_and_parse(){
scanf("%d%d",&w,&n);
for(int i=1,v,mi,mx;i<=n;i++){
scanf("%d%d%d",&v,&mi,&mx);
for(int j=mi;j<=mx;j++)cost[++tot]=j,val[tot]=v;
}
}
void solve(){
dp[0].insert(0);
for(int i=1;i<=tot;i++)
for(int j=cost[i];j<=w;j++)
for(set<int>::iterator p=dp[j-cost[i]].begin();p!=dp[j-cost[i]].end();p++)
dp[j].insert(*p+val[i]);
printf("%d\n",dp[w].size());
}
int main(){
read_and_parse();
solve();
return 0;
}
代码 2 如下
#include <bits/stdc++.h>
using namespace std;
int w,n,ans,val[300],cost[300],tot,dp[110][2510];
void read_and_parse(){
scanf("%d%d",&w,&n);
for(int i=1,v,mi,mx;i<=n;i++){
scanf("%d%d%d",&v,&mi,&mx);
for(int j=mi;j<=mx;j++)cost[++tot]=j,val[tot]=v;
}
}
void solve(){
dp[0][0]=1;
for(int i=1;i<=tot;i++)
for(int j=cost[i];j<=w;j++)
for(int k=val[i];k<=2500;k++)
dp[j][k]|=dp[j-cost[i]][k-val[i]];
for(int i=0;i<=2500;i++)if(dp[w][i])++ans;
printf("%d\n",ans);
}
int main(){
read_and_parse();
solve();
return 0;
}
【codevs1297】硬币 完全背包的更多相关文章
- codevs1297 硬币(背包dp,方案数)
1297 硬币 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 我们知道即使是同一种面值的硬币,它们的重量也有可能不一样, ...
- BZOJ 1042: [HAOI2008]硬币购物( 背包dp + 容斥原理 )
先按完全背包做一次dp, dp(x)表示x元的东西有多少种方案, 然后再容斥一下. ---------------------------------------------------------- ...
- bzoj1708:[Usaco2007 Oct]Money奶牛的硬币(完全背包
1708: [Usaco2007 Oct]Money奶牛的硬币 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 797 Solved: 540[Submi ...
- BZOJ 1042 硬币购物(背包DP+容斥原理)
可以看出这是个多重背包,运用单调队列优化可以使每次询问达到O(s).这样总复杂度为O(s*tot). 会TLE. 因为改题的特殊性,每个硬币的币值是不变的,变的只是每次询问的硬币个数. 我们不妨不考虑 ...
- Luogu P1450 [HAOI2008]硬币购物 背包+容斥原理
考虑如果没有个数的限制,那么就是一个完全背包,所以先跑一个完全背包,求出没有个数限制的方案数即可. 因为有个数的限制,所以容斥一下:没有1个超过限制的方案=至少0个超过限制-至少1个超过限制+至少2个 ...
- 洛谷P1450 [HAOI2008]硬币购物 背包+容斥
无限背包+容斥? 观察数据范围,可重背包无法通过,假设没有数量限制,利用用无限背包 进行预处理,因为实际硬币数有限,考虑减掉多加的部分 如何减?利用容斥原理,减掉不符合第一枚硬币数的,第二枚,依次类推 ...
- [Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥
题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包 ...
- codevs1297 硬币
1297 硬币 题目描述 Description 我们知道即使是同一种面值的硬币,它们的重量也有可能不一样,因为它受到许多因素的影响,包括制造工艺和流程上的.但是任何一种面值的硬币的重量总是处于某 ...
- poj1742硬币——多重背包可行性
题目:http://poj.org/problem?id=1742 贪心地想,1.如果一种面值已经可以被组成,则不再对它更新: 2.对于同一种面值的硬币,尽量用较少硬币(一个)更新,使后面可以用更多此 ...
随机推荐
- Exp7
实验内容 简单应用SET工具建立冒名网站 kali IP: 192.168.1.160 (原198) win7 IP: 192.168.1.199 1.开启本机Apache服务 (1)查看80端口是否 ...
- SVD(奇异值分解)Python实现
注:在<SVD(奇异值分解)小结 >中分享了SVD原理,但其中只是利用了numpy.linalg.svd函数应用了它,并没有提到如何自己编写代码实现它,在这里,我再分享一下如何自已写一个S ...
- 如何取得Oracle并行执行的trace
如何取得Oracle并行执行的trace: ALTER SESSION SET tracefile_identifier='10046_PROD';ALTER SESSION SET max_dump ...
- Maven学习第1期---Maven简单介绍
前言 Hadoop的MapReduce环境是一个复杂的编程环境,所以我们要尽可能地简化构建MapReduce项目的过程.Maven是一个很不错的自动化项目构建工具,通过Maven来帮助我们从复杂的环境 ...
- stl源码剖析 详细学习笔记 算法(4)
//---------------------------15/03/31---------------------------- //lower_bound(要求有序) template<cl ...
- Js_判断浏览器
var isIE=!!window.ActiveXObject;var isIE6=isIE&&!window.XMLHttpRequest;var isIE8=isIE&&a ...
- shellcode 初次使用笔记
winXP SP3 环境 (xp环境默认没开启栈不可执行机制,比较方便破解,如果已开启了,请自行百度如何关闭) dig.exe 目标文件 x86dbg调试工具 python 环境 打开准备好的目标软件 ...
- ThinkPHP框架知识(比较全的知识)
php框架 一.真实项目开发步骤: 多人同时开发项目,协作开发项目.分工合理.效率有提高(代码风格不一样.分工不好) 测试阶段 上线运行 对项目进行维护.修改.升级(单个人维护项目,十分困难,代码风格 ...
- Game over 作业
终于有一篇不拼代码拼码字的作业了,哈哈哈..... 从寒假到这次结束,经历的博客及编码作业的过程 前面七次作业做个分类: 通往博客园和C++的第一步. 知识点:让我们对C++做一个预习,在学C++前有 ...
- 团队作业8——测试与发布(Beta阶段)目录
团队作业8——测试与发布(Beta阶段) http://www.cnblogs.com/zy-96/p/8053097.html 团队作业8——测试与发布(Beta阶段)之展示博客 http://ww ...