MT【203】连续型的最值
(北大自招)已知$-6\le x_i\le 10 (i=1,2,\cdots,10),\sum\limits_{i=1}^{10}x_i=50,$当$\sum\limits_{i=1}^{10}x^2_i$取到最大值时,在$x_1,\cdots ,x_{10}$这十个数中等于$-6$的数共有______

提示:注意到:$a\le b\le c\le d$且$a+d=b+c$时,$a^2+d^2-(b^2+c^2)=(d-c)(d+c-a-b)\ge0$故$x_i$中最多一个属于$(-6,10)$,不妨该数记为a,设有$k$的-6,则$-6k+(9-k)10+a=50,$易得$k=3$
或者用反证法说明:
假设当$\sum\limits_{i = 1}^{10} {{x_i}^2} $取得最大值时,在$x_i$中存在两个数$x_i,x_j\in(-6,10),x_i\leqslant x_j$,则令$x=\min\{10-x_j,x_i+6\}$,则$x>0$,且$x_i-x\geqslant -6,x_j+x\leqslant 10$,且有$$(x_i-x)^2+(x_j+x)^2=x_i^2+x_j^2+2x^2+2x(x_j-x_i)>x_i^2+x_j^2,$$矛盾,所以$x_i,i=1,2,\cdots,10$中至多只有一个数不等于$-6$或$10$.
假设其中有$k$个$-6$,则有$9-k$个$10$,剩下的一个数为$$50-(-6)k-10(9-k)=16k-40\in(-6,10),$$解得$k=3$
注:这里其实有一个重要定理

MT【203】连续型的最值的更多相关文章
- 连续型变量的推断性分析——t检验
连续型变量的推断性分析方法主要有t检验和方差分析两种,这两种方法可以解决一些实际的分析问题,下面我们分别来介绍一下这两种方法 一.t检验(Student's t test) t检验也称student ...
- 【概率论与数理统计】小结4 - 一维连续型随机变量及其Python实现
注:上一小节总结了离散型随机变量,这个小节总结连续型随机变量.离散型随机变量的可能取值只有有限多个或是无限可数的(可以与自然数一一对应),连续型随机变量的可能取值则是一段连续的区域或是整个实数轴,是不 ...
- 常用连续型分布介绍及R语言实现
常用连续型分布介绍及R语言实现 R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大. R语言作为统计学一门语言,一直在小众领域闪耀着光芒.直到大数 ...
- 处理离散型特征和连续型特征共存的情况 归一化 论述了对离散特征进行one-hot编码的意义
转发:https://blog.csdn.net/lujiandong1/article/details/49448051 处理离散型特征和连续型特征并存的情况,如何做归一化.参考博客进行了总结:ht ...
- 2×c列联表|多组比例简式|卡方检验|χ2检验与连续型资料假设检验
第四章 χ2检验 χ2检验与连续型资料假设检验的区别? 卡方检验的假设检验是什么? 理论值等于实际值 何条件下卡方检验的需要矫正?如何矫正? 卡方检验的自由度如何计算? Df=k-1而不是n-1 卡方 ...
- 为什么阿里巴巴Java开发手册中强制要求整型包装类对象值用 equals 方法比较?
在阅读<阿里巴巴Java开发手册>时,发现有一条关于整型包装类对象之间值比较的规约,具体内容如下: 这条建议非常值得大家关注, 而且该问题在 Java 面试中十分常见. 还需要思考以下几个 ...
- seaborn 数据可视化(一)连续型变量可视化
一.综述 Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,图像也更加美观,本文基于seaborn官方API还有自己的一些理解. 1.1.样式控制: ...
- 【书签】连续型特征的归一化和离散特征的one-hot编码
1. 连续型特征的常用的归一化方法.离散型特征one-hot编码的意义 2. 度量特征之间的相关性:余弦相似度和皮尔逊相关系数
- 第一节 Python基础之数据类型(整型,布尔值,字符串)
数据类型是每一种语言的基础,就比如说一支笔,它的墨有可能是红色,有可能是黑色,也有可能是黄色等等,这不同的颜色就会被人用在不同的场景.Python中的数据类型也是一样,比如说我们要描述一个人的年龄:小 ...
随机推荐
- ChromeExtension入门浅谈
0.写在前面的话 朋友上班时每天好几个时段都有个客流信息需要汇报到微信里,都是照着网页上的数据手动填写,着实麻烦.所以给写了个简单的函数每次到控制台里去运行,但是体验也并不好,今天就花了一整天的时间鼓 ...
- Android设备管理器漏洞(转)
一.漏洞描述 目前被称为“史上最强Android木马”的病毒Backdoor.AndroidOS.Obad.a利用Android设备管理器漏洞使用户无法通过正常方式卸载.其实该漏洞早在去年底已被发现. ...
- 20155232《网络对抗》 Exp1 PC平台逆向破解(5)M
20155232<网络对抗> Exp1 PC平台逆向破解(5)M 实验内容 (1).掌握NOP, JNE, JE, JMP, CMP汇编指令的机器码(1分) (2)掌握反汇编与十六进制编程 ...
- Luogu P1120 小木棍 [数据加强版]
看了题目心中只有一个字——搜索!!! 但是很显然,朴素的搜索(回溯)绝壁超时. 剪枝&优化(要搞很多,要不然过不了) 1:从小到大搜索它们的因数,这样找到就exit. 2:将数据从大到小排序, ...
- 微信小程序之可滚动视图容器组件 scroll-view
1. 纵向滚动 scroll-y 当 设置为scroll-y 时, 需要将其高度设为固定值 如果整个页面,即最外层标签为scroll-view,需要并将其高度设为100%,也需要将page设为100% ...
- UWP简单示例(一):快速合成音乐MV
说明 本文发布时间较早,内容可能已过时.最新动态请关注 TypeScript 版本.(2019 年 3 月 注) 在线演示: 音频可视化(TypeScript) 准备 IDE:Visual Studi ...
- Mysql_游标
MySQL中的游标是一个十分重要的概念.游标提供了一种对从表中检索出的数据进行操作的灵活手段,就本质而言,游标实际上是一种能从包括多条数据记录的结果集中每次提取一条记录的机制.MySQL中的游标的语法 ...
- Oracle实用地址
1.详细安装教程 https://jingyan.baidu.com/article/3c48dd34be2a32e10be35881.html
- UI Recorder 安装教程(二)
前言: UI Recorder支持无线native app(Android, iOS)录制, 基于macaca实现:https://macacajs.com/ 本次教程只针对无线native app( ...
- @PathVariable获取带点参数,获取不全
{account:.+}在{account}后加上:.+ 可参考原博:http://blog.csdn.net/jrainbow/article/details/46126179