最近想学DP,锻炼思维,记录一下自己踩到的坑,来写一波详细的结题报告,持续更新。

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1003

Problem Description

Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.

Input

The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).

Output

For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.

Sample Input

2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5

Sample Output

Case 1: 14 1 4 Case 2: 7 1 6

Author

Ignatius.L

Recommend

We have carefully selected several similar problems for you:  1069 2084 1058 1421 1024

这一个题是一个基本题型,先分析数据这点很重要,刚刚踩坑,这里每个ai大于-1000,小于1000,那么min为-1e3*1e5,也就是说求和后最小值最大值为1e8量级,那么比较时最大最小值一定设置比这个量级大或在这个量级最大,而我没考虑到如果全为负数时的情况。

开始说题目,这个题目找最大子串,对于任意一个元素,它有两种可能性,做上个子串的最后一个字符,作以自己开头的子串的第一个字符,我们这里不考虑当前字符后续字符,因为DP子问题无后效性,那么两种状态到了,我们要找出两种状态分支的条件,如果一个元素跟着前面的大哥混没前途,那就不跟他混了,自立山头,不前面序列的和都小于0,不如自己做开头。即可写出状态转移方程。0)\\ a[i]&if(dp[i-1],这里问什么没写等于0呢,因为题目的要求是找最靠前的左端点,所以这等于号要放到上面,但是我们怎么存储端点呢?一样的状态转移,我跟前面的老大哥们混,我的头头肯定是前面的老大哥,所以那我的老大哥也是这个子序列的第一个,如果这个小团伙没落了,我自立山头,那么后来的人的大哥肯定会是我,所以就有了状态转移方程,再开一维,也可以再开一个数组,我不太建议跑好几遍循环的方法,能简化就简化。

if(dp[i-1][1]<0||i==1) //i==1细节操作,自己想一下
{
dp[i][0]=i;
dp[i][1]=a[i];
}
else
{
dp[i][0]=dp[i-1][0];
dp[i][1]=dp[i-1][1]+a[i];
}

应该没什么要注意了,还有就是 初始化,这是多组输入。

杭电60题--part 1 HDU1003 Max Sum(DP 动态规划)的更多相关文章

  1. 高手看了,感觉惨不忍睹——关于“【ACM】杭电ACM题一直WA求高手看看代码”

    按 被中科大软件学院二年级研究生 HCOONa 骂为“误人子弟”之后(见:<中科大的那位,敢更不要脸点么?> ),继续“误人子弟”. 问题: 题目:(感谢 王爱学志 网友对题目给出的翻译) ...

  2. Help Johnny-(类似杭电acm3568题)

    Help Johnny(类似杭电3568题) Description Poor Johnny is so busy this term. His tutor threw lots of hard pr ...

  3. 杭电oj2093题,Java版

    杭电2093题,Java版 虽然不难但很麻烦. import java.util.ArrayList; import java.util.Collections; import java.util.L ...

  4. 解题报告:hdu1003 Max Sum - 最大连续区间和 - 计算开头和结尾

    2017-09-06 21:32:22 writer:pprp 可以作为一个模板 /* @theme: hdu1003 Max Sum @writer:pprp @end:21:26 @declare ...

  5. HDOJ(HDU).1003 Max Sum (DP)

    HDOJ(HDU).1003 Max Sum (DP) 点我挑战题目 算法学习-–动态规划初探 题意分析 给出一段数字序列,求出最大连续子段和.典型的动态规划问题. 用数组a表示存储的数字序列,sum ...

  6. acm入门 杭电1001题 有关溢出的考虑

    最近在尝试做acm试题,刚刚是1001题就把我困住了,这是题目: Problem Description In this problem, your task is to calculate SUM( ...

  7. 杭电ACM题单

    杭电acm题目分类版本1 1002 简单的大数 1003 DP经典问题,最大连续子段和 1004 简单题 1005 找规律(循环点) 1006 感觉有点BT的题,我到现在还没过 1007 经典问题,最 ...

  8. ACM学习历程—HDU1003 Max Sum(dp && 最大子序列和)

    Description Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub ...

  9. HDU1003 Max Sum(求最大字段和)

    事实上这连续发表的三篇是一模一样的思路,我就厚颜无耻的再发一篇吧! 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1003 -------------- ...

随机推荐

  1. zendframework3

    1.开发时关闭cache,正式上线后打开cache application config file (config/application.config.php),  disable this cac ...

  2. javascript入门 之 zTree (一)

    1.安装: 我用的bower工具,所以执行: bower install ztree 2.详细功能与配制,请考官方文档: http://www.treejs.cn/v3/main.php#_zTree ...

  3. 37.2 net-- tcp传输 ServerSocket、Socket

    一.打开server端 package day35_net_网络编程.tcp传输; import java.io.IOException; import java.io.InputStream; im ...

  4. 双色球的Python实现

    代码如下: red_ball = [] blue_ball = [] count = 0 while count < 6: n = int(input('\033[31mPlease enter ...

  5. std::forward和std::move

    std::forward完美转发 保证参数原来的属性(用在template的参数是引用的时候):左值引用在被转发之后仍然保持左值属性,右值引用在被转发之后依然保持右值属性 void show(int& ...

  6. Xcode自动注释插件:VVDocumenter-Xcode

    VVDocumenter-Xcode 是由 @onevcat 喵神开发的一个Xcode插件,其作用是在Xcode中输入"///"后自动生成规范的文档注释,的确非常好用而且实用. G ...

  7. Extjs简单的form+grid组合

    采用的是Extjs4.2版本 http://localhost:49999/GridPanel/Index 该链接是本地连接,只是方便自己访问,读者无法正常访问. <script src=&qu ...

  8. C - Max Sum Plus Plus HDU - 1024

    用二位数组dp[i][j]记录组数为i,前j个数字的最大子段和. 转移方程: dp[i][j],考虑第j个数,第j个数可以并到前面那一组,此时dp[i][j]=dp[i][j-1]+arr[j],第j ...

  9. pyinstaller打包

    参考 官网:http://www.pyinstaller.org/ pyinstaller参数使用 使用spec文件 安装 Windows依赖pypiwin32,新版的pyinstaller已经包含了 ...

  10. 再看CVE-2018-12613 phpmyadmin后台文件包含&&RPO攻击

    写在前面 因为看了朋友的一篇分析又回头想了想自己去年遇到的这个纠结的问题. 去年写过一篇phpmyadmin后台文件包含的文章,写的非常的草草,并没有分析的过程,只是把自己的问题记了下来.当时纠结于最 ...