李航老师书上的的算法说明没怎么看懂,看了网上的博客,悟出一套循环(建立好KD树以后的最近邻搜索),我想应该是这样的(例子是李航《统计学习算法》第三章56页;例3.3):

  步骤 结点查询标记 栈内元素(本次循环结束后) 最近点 最近距离 说明
A B C D E F G
初始化 ABD M=空 Mdis = ∞ 初始化:先将S所在的区域找到,将经过的各个结点依次加入栈中,将查询标记初始化为0
循环 AB M=D Mdis = dis(S,D) 取出栈顶元素D,D被查询,更新D的标记为1,计算S与D的距离,比当前最小值小,更新M=D,Mdis = dis(S,D),计算S到D的超平面的距离是否小于Mdis(这里二维就是以S为圆心,Mdis为半径的圆是否与D那维的直线相交,在这里是相交的),小于,将D两侧的子结点加入栈,但是D两侧没有子结点,不加
A M=D Mdis = dis(S,D) 取出栈顶元素B,B被查询,更新B的标记为1,计算S与B的距离,不比当前最小值小,不更新,计算S到B的超平面的距离是否小于Mdis,大于,那就只加入B的S那一侧的子结点D,子结点D已经被标记为1,已被查询,不加入
C M=D Mdis = dis(S,D) 取出栈顶元素A,A被查询,更新A的标记为1,计算S与A的距离,不比当前最小值小,不更新,计算S到A的超平面的距离是否小于Mdis,小于,将A两侧的子结点加入,子结点B已经被标记为1,被查询,不加入,子结点C标记为0,加入栈
E M=D Mdis = dis(S,D) 取出栈顶元素C,C被查询,更新C的标记为1,计算S与C的距离,不比当前最小值小,不更新,计算S到C的超平面的距离是否小于Mdis,大于,只加入C的S那侧的子结点E,子结点E标记为0,没被查询,加入栈
  M=E Mdis = dis(S,E) 取出栈顶元素E,E被查询,更新E的标记为1,计算S与E的距离,比当前最小值小,更新M=E,Mdis = dis(S,D),计算S到E的超平面的距离是否小于Mdis,小于,将E两侧的子结点加入栈,但是E两侧没有子结点,不加
  M=E Mdis = dis(S,E) 栈空,循环结束

如果有错,还望大佬们能够指正

统计学习方法——KD树最近邻搜索的更多相关文章

  1. KNN算法与Kd树

    最近邻法和k-近邻法 下面图片中只有三种豆,有三个豆是未知的种类,如何判定他们的种类? 提供一种思路,即:未知的豆离哪种豆最近就认为未知豆和该豆是同一种类.由此,我们引出最近邻算法的定义:为了判定未知 ...

  2. 从K近邻算法谈到KD树、SIFT+BBF算法

    转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章 ...

  3. <转>从K近邻算法、距离度量谈到KD树、SIFT+BBF算法

    转自 http://blog.csdn.net/likika2012/article/details/39619687 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经 ...

  4. 统计学习方法笔记 -- KNN

    K近邻法(K-nearest neighbor,k-NN),这里只讨论基于knn的分类问题,1968年由Cover和Hart提出,属于判别模型 K近邻法不具有显式的学习过程,算法比较简单,每次分类都是 ...

  5. 从K近邻算法、距离度量谈到KD树、SIFT+BBF算法

    转载自:http://blog.csdn.net/v_july_v/article/details/8203674/ 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说: ...

  6. 统计学习方法与Python实现(二)——k近邻法

    统计学习方法与Python实现(二)——k近邻法 iwehdio的博客园:https://www.cnblogs.com/iwehdio/ 1.定义 k近邻法假设给定一个训练数据集,其中的实例类别已定 ...

  7. 李航统计学习方法——算法2k近邻法

    2.4.1 构造kd树 给定一个二维空间数据集,T={(2,3),(5,4),(9,6)(4,7),(8,1),(7,2)} ,构造的kd树见下图 2.4.2 kd树最近邻搜索算法 三.实现算法 下面 ...

  8. 一看就懂的K近邻算法(KNN),K-D树,并实现手写数字识别!

    1. 什么是KNN 1.1 KNN的通俗解释 何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1 ...

  9. 统计学习方法 | 第3章 k邻近法

    第3章 k近邻法   1.近邻法是基本且简单的分类与回归方法.近邻法的基本做法是:对给定的训练实例点和输入实例点,首先确定输入实例点的个最近邻训练实例点,然后利用这个训练实例点的类的多数来预测输入实例 ...

随机推荐

  1. 炼金术(2): 为什么要用issue管理软件

    在项目开发中,存在的无数的任务分解,问题管理,流程跟踪.因为直接说话或者直接在IM里喊话是很容易的,所以在一个还没有习惯使用issue管理软件的团队中,直接说话或者直接在IM里AT,就在某些时候变成了 ...

  2. java中对于多态的一个实例分析

    首先来看这样的一段代码,其中对于类的定义如下: class Parent{ public int myValue=100; public void printValue() { System.out. ...

  3. 【转】uWSGI+django+nginx的工作原理流程与部署历程

    一.前言献给和我一样懵懂中不断汲取知识,进步的人们. 霓虹闪烁,但人们真正需要的,只是一个可以照亮前路的烛光 二.必要的前提 2.1 准备知识 1.django 一个基于python的开源web框架, ...

  4. ES Search API

    Search API 搜索请求 SearchRequest用于与搜索文档.聚合.suggestions相关的任何操作,还提供了在结果文档上请求高亮的方法. 在最基本的表单中,我们可以向请求添加查询: ...

  5. 3.java发展简史

    1991年,James Gosling在SUN(Stanford University Network)公司的工程师小组想要设计这样一种小型计算机语言.该语言主要用于像电视盒这样的消费类电子产品.另外 ...

  6. sqllab less-1

    1.访问sqllab 的less-1 按提示加入http://10.9.2.81/Less-1/?id=1 2. 后面加入单引号,发生报错http://10.9.2.81/Less-1/?id=1‘ ...

  7. win10+anaconda安装tensorflow和keras遇到的坑小结

    win10下利用anaconda安装tensorflow和keras的教程都大同小异(针对CPU版本,我的gpu是1050TI的MAX-Q,不知为啥一直没安装成功),下面简单说下步骤. 一 Anaco ...

  8. PAT T1017 The Best Peak Shape

    动态规划找最长上升子序列,正反遍历一遍序列即可~ #include<bits/stdc++.h> using namespace std; ; int N; int a[maxn]; in ...

  9. nginx 网络层的优化

    TCP三次握手四次挥手 系统层的优化,主动建立连接时的重试次数 net.ipv4.tcp_syn_retries = 6 建立连接时本地端口可用范围:手动可以tiaoz net.ipv4.ip_loc ...

  10. 让eclipse恢复默认布局

    参考:https://blog.csdn.net/howlaa/article/details/39178359 Window -> Perspective -> Reset Perspe ...