Given two positive integers G and L, could you tell me how many solutions of (x, y, z) there are, satisfying that gcd(x, y, z) = G and lcm(x, y, z) = L? 
Note, gcd(x, y, z) means the greatest common divisor of x, y and z, while lcm(x, y, z) means the least common multiple of x, y and z. 
Note 2, (1, 2, 3) and (1, 3, 2) are two different solutions.

InputFirst line comes an integer T (T <= 12), telling the number of test cases. 
The next T lines, each contains two positive 32-bit signed integers, G and L. 
It’s guaranteed that each answer will fit in a 32-bit signed integer.OutputFor each test case, print one line with the number of solutions satisfying the conditions above.Sample Input

2
6 72
7 33

Sample Output

72
0
昨天想了好久都没想通,,今天早上灵感突然的就来了。
题解:首先我们要理解,最大公约数和最小公倍数的关系,比如说a*b=gcd(a,b)*lcm(a,b) 如果两边同时除以gcd的平方 lcm%gcd==0 所以,如果lcm%gcd!=0的话 应该不会存在关系
第二: 我们让gcd和lcm同时除以gcd可得新的gcd和lcm gcd=1 lcm=lcm/gcd 他们分别是x/gcd y/gcd z/gcd的gcd和lcm 因此我们只要分解lcm/gcd就可以了
第三:lcm=p1^max(a1,a2,a3)*p2^max(b1,b2,b3)....
    x0=p1^a1....
    y0=p1^b1...
    z0=p1^c1...
假如说a1 b1 c1 都不为0,那么他们的最大公约数不会是1,因此他们三者中至少有一个为0 ,最多有两个为0(3个为0的情况不会出现,p1一定是其中一个数的只质因子)由于是有顺序的
(0,a1,c1)加入最多的为a1那么C1的取值为0--a1我们先考虑为0和相等的情况 有a1-1中,,变换一下顺序一共有6(a1-1)种,还有(0,0,a1)和(0,a1,a1)我们没考虑共3+3种因此共有6(a1-1)+6种
#include<iostream>
#include<cstdio>
using namespace std;
const int N=1e6+;
bool p[N]={,,};
int prime[N];
int k=;
void pre(){
k=;
for(int i=;i<N;i++){
if(p[i]==){
prime[k++]=i;
for(int j=i+i;j<=N;j+=i){
p[i]=;
}
}
}
} int main(){
pre();
int t;
cin>>t;
while(t--){
int n,m;
scanf("%d%d",&n,&m);
if(m%n!=){//最大公约数应该是最下公倍数的系数比如说a*b=gcd*lcm两边同时除以gcd的平方,so lcm%gcd=0
puts("");
continue ;
}
int x=m/n;
int sum=;
for(int i=;i<k&&prime[i]<x;i++){
if(x%prime[i]==){
int ans=;
while(x%prime[i]==){
ans++;
x=x/prime[i];
}
sum*=*ans;
}
}
if(x>) sum*=;
cout<<sum<<endl; } return ;
}
												

G - GCD and LCM 杭电的更多相关文章

  1. 2022“杭电杯”中国大学生算法设计超级联赛(6)- 1011 Find different

    2022"杭电杯"中国大学生算法设计超级联赛(6)- 1011 Find different 比赛时队友开摆,还剩半个小时,怎么办?? 当然是一起摆 Solution 看到这个题没 ...

  2. 杭电acm 1002 大数模板(一)

    从杭电第一题开始A,发现做到1002就不会了,经过几天时间终于A出来了,顺便整理了一下关于大数的东西 其实这是刘汝佳老师在<算法竞赛 经典入门 第二版> 中所讲的模板,代码原封不动写上的, ...

  3. HDOJ 4497 GCD and LCM

    组合数学 GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) ...

  4. C#利用POST实现杭电oj的AC自动机器人,AC率高达50%~~

    暑假集训虽然很快乐,偶尔也会比较枯燥,,这个时候就需要自娱自乐... 然后看hdu的排行榜发现,除了一些是虚拟测评机的账号以外,有几个都是AC自动机器人 然后发现有一位作者是用网页填表然后按钮模拟,, ...

  5. hdu 4497 GCD and LCM 数学

    GCD and LCM Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=4 ...

  6. hdu 1290_献给杭电五十周年校庆的礼物

    Description 或许你曾经牢骚满腹或许你依然心怀忧伤或许你近在咫尺或许你我天各一方 对于每一个学子母校 永远航行在生命的海洋 今年是我们杭电建校五十周年,这是一个值得祝福的日子.我们该送给母校 ...

  7. AOJ 0005 GCD and LCM

    题意:求两数最大公约数和最小公倍数. 类型:辗转相除法 算法:gcd(a,b)=gcd(b,a%b),lcm(a,b)=a*b/gcd(a,b). #include <cstdio> #i ...

  8. HDU 4497 GCD and LCM (合数分解)

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  9. hdu4497 GCD and LCM

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others) Total S ...

随机推荐

  1. JavaScript----简介及基础语法

    ##JavaScript *概念:一门客户端脚本语言 *运行在客户端浏览器中的.每一个浏览器都有JavaScript的解析引擎. *脚本语言:不需要编译,直接就可以被浏览器解析执行. *功能: *可以 ...

  2. Node/Python 工具搭建cmder和nrm

    一.安装cmder cmder是windows下的一款终端工具,支持很多linux命令,用起来还是很爽的. 1.安装 http://cmder.net/ 直接在官网下载,解压即可. 2.cmder配置 ...

  3. springboot整合dubbo+zookeeper最新详细

    引入 最近和小伙伴做一个比赛,处于开发阶段,因为涉及的服务比较多,且服务需要分开部署在不同的服务器上,讨论之后,打算采用分布式来做,之前学习springboot的时候,部分章节涉及到了springbo ...

  4. Map m = Collections.synchronizedMap(new HashMap())

    Collections.synchronizedMap(new HashMap())让你创建的new HashMap()支持多线程数据的同步.保证多线程访问数据的一致性 来源:http://www.b ...

  5. 《Mathematical Analysis of Algorithms》中有关“就地排列”(In Situ Permutation)的算法分析

    问题描述 把数列\((x_1,x_2,\cdots,x_n)\)变换顺序为\((x_{p(1)},x_{p(2)},\cdots,x_{p(n)})\),其中\(p\)是\(A=\{1,2,3,\cd ...

  6. 求第 k 小:大元素

    #include<bits/stdc++.h> using namespace std; void swap_t(int a[],int i,int j) { int t=a[i]; a[ ...

  7. Visio2013 专业版激活码和激活工具 亲测有效

    Visio2013密钥 专业版:Visio Professional 2013 KEY C2FG9-N6J68-H8BTJ-BW3QX-RM3B3 2NYF6-QG2CY-9F8XC-GWMBW-29 ...

  8. Mybatis多表关联查询字段值覆盖问题

    一.错误展示 1.首先向大家展示多表关联查询的返回结果集 <resultMap id="specialdayAndWorktimeMap type="com.hierway. ...

  9. Django-使用 include() 配置 URL

    如果项目非常庞大,应用非常多,应用的 URL 都写在根 urls.py 配置文件中的话,会显的非常杂乱,还会出现名称冲突之类的问题,这样对开发整个项目是非常不利的. 可以这样解决,把每个应用的 URL ...

  10. docker安装Elasticsearch7.6集群并设置密码

    docker安装Elasticsearch7.6集群并设置密码 Elasticsearch从6.8开始, 允许免费用户使用X-Pack的安全功能, 以前安装es都是裸奔.接下来记录配置安全认证的方法. ...