字符窜同构的性质:同构字符窜拥有最小和最大的表示方法;

最长回文子窜:

1.首先暴力法:(n三方)

枚举每个起点和终点,然后单向扫描判断是不是回文子窜;

2.中心扩散法,(N方)

枚举每个中点,向外扩散,看以他为中心的回文子窜的长度是多少;

易证:复杂度N方

3.O(N)的做法;

https://blog.csdn.net/afei__/article/details/83214042?depth_1-utm_source=distribute.pc_relevant.none-task&utm_source=distribute.pc_relevant.none-task

我的理解:和扩展KMP有点相似,扩展KMP,我们为了不重复所以设定了破,po和ex[po],然后我们讨论i可能的答案是否已经包含在扫描的里面了,如果包含了直接赋值,没包含继续扫描;

我们对中心扩散的方法进行改进,

1.思想:    1)将原字符串S的每个字符间都插入一个永远不会在S中出现的字符(本例中用“#”表示),在S的首尾也插入该字符,使得到的新字符串S_new长度为2*S.length()+1,保证Len的长度为奇数(下例中空格不表示字符,仅美观作用);

例:S:       a  a  b  a  b  b  a

S_new:        #  a  #  a  #  b  #  a  #  b  #  b  #  a  #

2)根据S_new求出以每个字符为中心的最长回文子串的最右端字符距离该字符的距离,存入Len数组中,即S_new[i]—S_new[r]为S_new[i]的最长回文子串的右段(S_new[2i-r]—S_new[r]为以S_new[i]为中心的最长回文子串),Len[i] = r - i + 1;

S_new:        #  a  #  a  #  b  #  a  #  b  #  b  #  a  #

Len:            1  2  3  2  1   4  1  4  1  2  5   2  1  2  1

Len数组性质:Len[i] - 1即为以Len[i]为中心的最长回文子串在S中的长度。在S_new中,以S_new[i]为中心的最长回文子串长度为2Len[i] - 1,由于在S_new中是在每个字符两侧都有新字符“#”,观察可知“#”的数量一定是比原字符多1的,即有Len[i]个,因此真实的回文子串长度为Len[i] - 1,最长回文子串长度为Math.max(Len) - 1。

3)Len数组求解(线性复杂度(O(n))):

a.遍历S_new数组,i为当前遍历到的位置,即求解以S_new[i]为中心的最长回文子串的Len[i];

b.设置两个参数:sub_midd = Len.indexOf(Math.max(Len)表示在i之前所得到的Len数组中的最大值所在位置、sub_side = sub_midd + Len[sub_midd] - 1表示以sub_midd为中心的最长回文子串的最右端在S_new中的位置。起始sub_midd和sub_side设为0,从S_new中的第一个字母开始计算,每次计算后都需要更新sub_midd和sub_side;

c.当i < sub_side时,取i关于sub_midd的对称点j(j = 2sub_midd - i,由于i <= sub_side,因此2sub_midd - sub_side <= j <= sub_midd);当Len[j] < sub_side - i时,即以S_new[j]为中心的最长回文子串是在以S_new[sub_midd]为中心的最长回文子串的内部,再由于i、j关于sub_midd对称,可知Len[i] = Len[j];    当Len[j] >= sub.side - i时说明以S_new[i]为中心的回文串可能延伸到sub_side之外,而大于sub_side的部分还没有进行匹配,所以要从sub_side+1位置开始进行匹配,直到匹配失败以后,从而更新sub_side和对应的sub_midd以及Len[i];

d.当i > sub_side时,则说明以S_new[i]为中心的最长回文子串还没开始匹配寻找,因此需要一个一个进行匹配寻找,结束后更新sub_side和对应的sub_midd以及Len[i]。

我的理解:

实际上我们每次扫描得到了sub_mid和sub_side,利用回文串的对称性,我们来判断是否已经在答案里面了,不在的我们就继续扫描比较下去;

就是对中心扩散法的一种dp;

与那个啥z函数有点类似的想法,利用性质推到到已经求过的内容然后及进行求解,避免重复扫描;

void getlen(char *str)
{
 int ans=1,arm=0;
 memset(len,0,sizeof(len));
 int mid=0,side=1,i,j,r;
 len[0]=1;
 for(i=1;i<R;i++)
 {
  j=2*mid-i;
  if(j<0||j-len[j]<=mid-len[mid])
  {
   r=side-i;
   if(r==0) side++,r=1;
   while(i-r>=0&&str[i-r]==str[side])
   {
    r++;
    side++;
   }
   mid=i;
   len[i]=r;
  }
  else
   len[i]=len[j];
  if(ans<len[i])
  {
   ans=len[i];
   arm=i;
  }
 }
 if(ans-1<2)
 cout<<"No solution!\n";
 else
 {
  int r=arm+len[arm]-1,l=arm-(len[arm]-1);
  r--;
  l=l/2;r=r/2;
  cout<<l<<" "<<r<<"\n";
  for(int i=l;i<=r;i++)
   slove(s1[i]);
  cout<<"\n";
 }
}

最长回文子窜O(N)的更多相关文章

  1. LeetCode-5:Longest Palindromic Substring(最长回文子字符串)

    描述:给一个字符串s,查找它的最长的回文子串.s的长度不超过1000. Input: "babad" Output: "bab" Note: "aba ...

  2. 1. Longest Palindromic Substring ( 最长回文子串 )

    要求: Given a string S, find the longest palindromic substring in S. (从字符串 S 中最长回文子字符串.) 何为回文字符串? A pa ...

  3. 最长回文子序列(LPS)

    问题描述: 回文是正序与逆序相同的非空字符串,例如"civic"."racecar"都是回文串.任意单个字符的回文是其本身. 求最长回文子序列要求在给定的字符串 ...

  4. 最长回文子串(动规,中心扩散法,Manacher算法)

    题目 leetcode:5. Longest Palindromic Substring 解法 动态规划 时间复杂度\(O(n^2)\),空间复杂度\(O(n^2)\) 基本解法直接看代码 class ...

  5. [LeetCode] Longest Palindromic Substring 最长回文串

    Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...

  6. 求最长回文子串:Manacher算法

    主要学习自:http://articles.leetcode.com/2011/11/longest-palindromic-substring-part-ii.html 问题描述:回文字符串就是左右 ...

  7. Manacher's algorithm: 最长回文子串算法

    Manacher 算法是时间.空间复杂度都为 O(n) 的解决 Longest palindromic substring(最长回文子串)的算法.回文串是中心对称的串,比如 'abcba'.'abcc ...

  8. leetcode-5 最长回文子串(动态规划)

    题目要求: * 给定字符串,求解最长回文子串 * 字符串最长为1000 * 存在独一无二的最长回文字符串 求解思路: * 回文字符串的子串也是回文,比如P[i,j](表示以i开始以j结束的子串)是回文 ...

  9. 最长回文子串(Longest Palindromic Substring)-DP问题

    问题描述: 给定一个字符串S,找出它的最大的回文子串,你可以假设字符串的最大长度是1000,而且存在唯一的最长回文子串 . 思路分析: 动态规划的思路:dp[i][j] 表示的是 从i 到 j 的字串 ...

随机推荐

  1. BeanShell调用自己写的jar包进行MD5加密

    1.在eclipse中新建一个java工程,工程名随意. 2.在工程中添加一个package,package名为md5,在package下添加一个class,class名为mymd5. package ...

  2. Apex_1. 解决“违反主键约束性”

    1.有创建序列号的可以把序列号调到当前记录ID的最大值+1: 2.进入系统文件system.properties,找到下面代码,把system.id.generator.type的值改为1: #系统默 ...

  3. DNS提供的服务

    DNS提供的服务 DNS是:1.一个由分层的DNS服务器实现的分布式数据库:2. 一个使主机能够查询分布式数据库的应用协议.DNS协议运行在UDP上,使用53号端口. 与http,FTP,SMTP协议 ...

  4. JS 冒泡排序详解

    冒泡排序原理:比较相邻两个数的大小,如果第一个数大于第二个数,那么交换位置,从第一位数开始,对后面每一对相邻的数据进行同样的比较和交换,直到最后没有任何一位需要进行比较大小和交换: 思路演算: arr ...

  5. deepin 系统 ssh,samba,redis,取消开机密码等相关配置

    ssh安装 sudo apt-get install openssh-server service ssh start ssh root 用户登入配置 安装完毕,运行命令"sudo vi / ...

  6. 使用PyTorch进行情侣幸福度测试指南

    欢迎关注磐创博客资源汇总站: http://docs.panchuang.net/ 欢迎关注PyTorch官方中文教程站: http://pytorch.panchuang.net/ 计算机视觉–图像 ...

  7. CSS3过渡结束监听事件,清除/修改表单元素的一些默认样式

    document.querySelector('div').addEventListener('transitionEnd',function(){ console.log('过度结束') }) 如果 ...

  8. Windows下命令行MySQL安装

    通过zip压缩包文件直接安装 1.下载链接 https://dev.mysql.com/downloads/mysql/ 下载好后解压移动文件夹 2.配环境变量 path路径追加 3.创建初始化文件 ...

  9. ArrayList中的Iterator详解

    每个实现Iterable接口的类必须提供一个iterator方法,返回一个Iterator对象,ArrayList也不例外 public Iterator<E> iterator() { ...

  10. MySQL默认隔离级别为什么是RR

    曾多次听到“MySQL为什么选择RR为默认隔离级别”的问题,其实这是个历史遗留问题,当前以及解决,但是MySQL的各个版本沿用了原有习惯.历史版本中的问题是什么,本次就通过简单的测试来说明一下. 1. ...