\(假设现在到第i个积木\)

\(红绿恰都是偶数a种方案,恰都是奇数为b种方案,一奇一偶为c种方案\)

\(由此考虑i+1个积木的情况\)

Ⅰ.一奇一偶的方案

\(如果第i层恰是奇数的情况,那么本次只要染色为红绿即可\)

\(如果第i层恰是偶数的情况,那么本次只要染色为红绿即可\)

\(如果第i层一奇一偶,那本次只要染色为蓝黄即可。\)

\(综上所诉,c1=a*2+b*2+c*2;\)

Ⅱ.恰为偶的方案

\(同理得,a1=a*2+c\)

Ⅲ.恰为奇的方案

\(同理得,b1=b*2+c\)

那么接下来就可以构造矩阵了。

\(对于|a,b,c|想得到|a*2+c,b*2+c,a*2+b*2+c*2|\)

在草稿纸上凑一凑就可以得到系数矩阵为

\[\left[
\begin{matrix}
2&0&2\\
0&2&2\\
1&1&2
\end{matrix}
\right]
\]

接下来就是套模板了。

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int mod=10007;
struct rce{
int m[4][4];
rce(){memset(m,0,sizeof(m));}
};
rce operator * (rce a,rce b)
{
rce ans;
for(int i=1;i<=3;i++)
for(int j=1;j<=3;j++)
{
ans.m[i][j]=0;
for(int k=1;k<=3;k++)
ans.m[i][j]=(ans.m[i][j]+a.m[i][k]*b.m[k][j]%mod)%mod;
}
return ans;
}
rce init()
{
rce temp;
for(int i=0;i<=3;i++) temp.m[i][i]=1;
return temp;
}
rce quickpow(rce a,int n)
{
rce ans=init();
while(n)
{
if(n&1) ans=ans*a;
a=a*a;
n>>=1;
}
return ans;
}
int main()
{
int t,n;
cin>>t;
while(t--)
{
cin>>n;
rce chu,xi;
chu.m[1][1]=2,chu.m[1][3]=2;
xi.m[1][1]=xi.m[1][3]=xi.m[2][2]=xi.m[2][3]=xi.m[3][3]=2;
xi.m[3][1]=xi.m[3][2]=1;//初始化系数矩阵
xi=quickpow(xi,n-1);
chu=chu*xi;
cout<<chu.m[1][1]%mod<<endl;
}
}

POJ3734(矩阵快速幂)的更多相关文章

  1. Blocks [POJ3734] [矩阵快速幂]

    题意: 有长度为n的一排格子,每个格子里面可以任意填入1,2,3,4四个数字,问1,2都为偶数个的方案 T组数据,每组数据一个n(<=1e9) 样例输入 2 1 2 样例输出 2 6 分析 设d ...

  2. poj3734矩阵快速幂

    挑战上面的题目,感觉脑洞很大 分别找红蓝个数全为偶,全为奇,一奇一偶的个数ai,bi,ci 转移矩阵是| 2 1 0 |,是一个对称矩阵(会不会有什么联系.) | 2 2 2 | | 0 1 2 | ...

  3. 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)

    题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...

  4. 51nod 算法马拉松18 B 非010串 矩阵快速幂

    非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...

  5. 51nod 1113 矩阵快速幂

    题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...

  6. 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】

    还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...

  7. HDU5950(矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 题意:f(n) = f(n-1) + 2*f(n-2) + n^4,f(1) = a , f(2 ...

  8. 51nod 1126 矩阵快速幂 水

    有一个序列是这样定义的:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. 给出A,B和N,求f(n)的值. Input 输 ...

  9. hdu2604(递推,矩阵快速幂)

    题目链接:hdu2604 这题重要的递推公式,找到公式就很easy了(这道题和hdu1757(题解)类似,只是这道题需要自己推公式) 可以直接找规律,推出递推公式,也有另一种找递推公式的方法:(PS: ...

随机推荐

  1. web.page.regexp用法(全网唯一)

    前言 因为这个东西“web.page.regexp”,差点把自己杀了.一点都不夸张,这将近30度的天气,办公室不开空调,又要闷,还要带着口罩,躁动的很.加上这个鬼东西“web.page.regexp” ...

  2. Java 数据类型转换的骚操作和神奇现象

    问:银行用什么数据类型来表示余额?float还是double? 都不是!!下面说明为什么都不可以呢? public static void main(String[] args) { //浮点数他都是 ...

  3. AJ学IOS(30)UI之Quartz2D画图片画文字

    回头看了看自己写的博客,AJ决定以后更改风格 本意是想大家看效果直接拷贝代码能用,注释齐全也方便学习,但是发现这样对新手学习特别困难 以后风格基本是–>看标题–>看目录–>看图片–& ...

  4. Tcxgrid使用例子

    1.更改某个单元格的值后,其他单元格的值也相应改变 直接点击单元格进行更改值,然后在改单元格增加相应的事件: procedure Tfrm_BarCode_makecl5.gdtv_1select_t ...

  5. stand up meeting 12-7

    weekend updates: 1.答题界面和结果界面的跳转和数据传输已全部完成. 2.答题界面完成简单的getRankingData API结果展示,答题时间,错误数目和错题题目的展示,点击题目可 ...

  6. First Training

    B B - Local Extrema CodeForces - 888A You are given an array a. Some element of this array ai is a l ...

  7. python成语接龙小游戏

    上一篇讲了小游戏的坑现在把源码放出来 #coding:utf-8 import string import pypinyin import sys import random print(" ...

  8. 《Spring In Action》阅读笔记之核心概念

    DI 依赖注入:在xml中配置的bean之间的依赖关系就是依赖注入 AOP 面向切面编程:如在xml中定义某个方法为切点,然后配置在该切点(该方法)调用前后需要调用的方法,从而简化了代码并解耦. Sp ...

  9. orcale 多列转一行显示

    强大的数据库有个自带函数wm_concat() wm_concat()这个函数放的是需要汇总的列 select wm_concat(name) name  from tablename

  10. wait,waitpid的学习使用

    man wait man waitpid 从中可知 函数原型 pid_t wait(int* status); pid_t waitpid(pid_t pid, int* status, int op ...