有监督学习
常用分类算法
KNN:K近邻分类器。通过计算待分类数据点,与已知数据中所有点的距离,取距离最小的前K个点,根据"少数服从多数"的原则,将这个数据点划分为出现次数最多的那个类别。
在sklearn中,使用sklearn.neighbors.KNeighborsClassifier创建K邻近分类器。
选取较大K值,可以减小误差,但可能导致预测错误。选取k值较小,易引起过拟合。一般倾向于选择较小的k值,并使用交叉验证法选取最优的k值。
决策树算法
是一种树形结构分类器,通过顺序询问分类点的属性决定分类点最终的类别。通常根据特征的信息增益等构建决策树。
使用sklearn.tree.DecisionTreeClassifier构建决策树进行分类。
决策树本质上是寻找一种对特征空间上的划分,旨在构建一个训练数据拟合的好,并且复杂度小的决策树。
朴素贝叶斯
以贝叶斯定理为基础的分类器。sklearn实现了三个朴素贝叶斯分类器:高斯朴素贝叶斯,多项式朴素贝叶斯,伯努利朴素贝叶斯。分别适用与不同的观测值的分布。
朴素贝叶斯是典型的生成学习算法。在小规模的数据上表现良好,适合进行多分类任务。
代码: https://github.com/zwdnet/MyQuant/blob/master/30

我发文章的四个地方,欢迎大家在朋友圈等地方分享,欢迎点“在看”。
我的个人博客地址:https://zwdnet.github.io
我的知乎文章地址: https://www.zhihu.com/people/zhao-you-min/posts
我的博客园博客地址: https://www.cnblogs.com/zwdnet/
我的微信个人订阅号:赵瑜敏的口腔医学学习园地

量化投资学习笔记30——《Python机器学习应用》课程笔记04的更多相关文章

  1. 量化投资学习笔记07——python知识补漏

    看<量化投资:以python为工具>这本书,第一部分是python的基础知识.这一部分略读了,只看我还不知道或不熟的. 定义复数 x = complex(2, 5) #2+5j 也可以直接 ...

  2. 量化投资学习笔记01——初识Pyalgotrade量化交易回测框架

    年初学习量化投资,一开始想自己从头写,还是受了C/C++的影响.结果困在了计算回测数据那里,结果老也不对,就暂时放下了.最近试了一下python的各个量化投资框架,发现一个能用的——pyalgotra ...

  3. 【机器学习笔记】Python机器学习基本语法

    本来算法没有那么复杂,但如果因为语法而攻不下就很耽误时间.于是就整理一下,搞python机器学习上都需要些什么基本语法,够用就行,可能会持续更新. Python四大类型 元组tuple,目前还没有感受 ...

  4. 吴恩达《机器学习》课程笔记——第六章:Matlab/Octave教程

    上一篇  ※※※※※※※※  [回到目录]  ※※※※※※※※  下一篇 这一章的内容比较简单,主要是MATLAB的一些基础教程,如果之前没有学过matlab建议直接找一本相关书籍,边做边学,matl ...

  5. 操作系统学习笔记----进程/线程模型----Coursera课程笔记

    操作系统学习笔记----进程/线程模型----Coursera课程笔记 进程/线程模型 0. 概述 0.1 进程模型 多道程序设计 进程的概念.进程控制块 进程状态及转换.进程队列 进程控制----进 ...

  6. 机器学习入门 - Google机器学习速成课程 - 笔记汇总

    机器学习入门 - Google机器学习速成课程 https://www.cnblogs.com/anliven/p/6107783.html MLCC简介 前提条件和准备工作 完成课程的下一步 机器学 ...

  7. css笔记 - 张鑫旭css课程笔记之 float 篇

    https://www.imooc.com/t/197450float float的设计初衷/原本作用-是为了实现文字环绕效果如,一个图片和一段文字垂直放置,给图片加上浮动,文字就环绕图片展示了. 浮 ...

  8. 量化投资学习笔记27——《Python机器学习应用》课程笔记01

    北京理工大学在线课程: http://www.icourse163.org/course/BIT-1001872001 机器学习分类 监督学习 无监督学习 半监督学习 强化学习 深度学习 Scikit ...

  9. 量化投资学习笔记31——《Python机器学习应用》课程笔记05

    用分类算法进行上证指数涨跌预测. 根据今天以前的150个交易日的数据,预测今日股市涨跌. 交叉验证的思想:将数据集D划分为k个大小相似的互斥子集,每个子集都尽可能保持数据分布的一致性,即从D中通过分层 ...

随机推荐

  1. mac 编程环境

    新mac (EI Capitan),需要在python中使用xgboost,通过pip安装未成功. 配置pip cat $HOME/Library/Application\ Support/pip/p ...

  2. socket 基础 X-mind

  3. python解一元一次方程

    将未知数看成是虚数 将常数看成是实数 最终求解. import re class Item: def __init__(self,imag=0,real=0): self.imag = imag se ...

  4. idea maven Running C:\Users\Administrator\AppData\Local\Temp\archetype1tmp

    Running C:\Users\Administrator\AppData\Local\Temp\archetype1tmp 在IDEA中通过maven项目管理工具创建javaweb项目的时候一直卡 ...

  5. django项目班笔记-模板抽取

    目录 一.将前端静态文件放置到项目文件目录 二.模板设置 三.将静态文件拖放到项目对应目录 四.检查HTML文件中的应用是否自动更改了 4.1 文件引用没有改变的解决方法 4.2 设置static文件 ...

  6. VerificationCodeService

    package me.zhengjie.system.domain; import lombok.AllArgsConstructor; import lombok.Data; import lomb ...

  7. D. Almost All Divisors

    We guessed some integer number xx. You are given a list of almost all its divisors. Almost all means ...

  8. vue点击复制文本粘贴

    <template>  <ul>      <li> <input type="text" class="inpNone&quo ...

  9. docker启动遇到的问题

    转:https://blog.csdn.net/w1316022737/article/details/83692701 遇到问题: Job for docker.service failed bec ...

  10. 三:mysql条件查询

    1:查询工资等于5000的员工