CSDN同步

原题链接

简要题意:

现在河面上有 \(n+2\) 块石头,编号 \(0\) 到 \(n+1\),\(1\)~\(n\) 块石头每块上有一个方向,如果是 \(L\),那么青蛙到这块石头上之后只能往左跳,如果是 \(R\) 只能往右,当然,第 \(0\) 块石头的方向是 \(R\).

现在青蛙要从 \(0\) 跳到 \(n+1\),请问他应该怎么跳才能让他跳跃过程中跳跃距离最长的最小呢?输出这个距离。

显然,我们考虑贪心。

C题一点也不难啊

你想,如果你既可以跳到 \(L\) 点,又可以跳到 \(R\) 点,那么你会选哪个呢?

当然是 \(R\) 点啦!

如何说明呢?(严谨点)

如果 \(L\) 在 \(R\) 的左边,那跳到 \(L\) 之后,只能一直往左,直到跳到一个 \(R\) 为止(总不能跳回去)。那么,你在跳这若干个 \(L\) 的第一个 \(L\) 的时候,既然能跳到 \(L\),那你直接选那个 \(R\) 不就行了,还浪费这么多步。

如果 \(L\) 在 \(R\) 的右边,那跳到 \(L\) 之后,你只能回到这个 \(R\) 点;否则你只能一直往后跳,直到另一个 \(R\);那么你跳过来的路径又被你从跳回去了,还得再跳回来,那有什么意思,还浪费这么多步。

所以,上述已经说明,我们不跳 \(L\),只跳 \(R\) 是最优的。(最少步数)

那么,最小的最长跳跃距离是多少呢?不就是相邻两个 \(R\) 的最大距离吗?

分析了这么多,终于找到了题目的本质,直接可以解决问题了!

时间复杂度: \(O(T \times n)\).

因为总长度不超过 \(10^5\),所以是 \(O(10^5)\).

空间复杂度: \(O(n)\).

实际得分:\(100pts\).

#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std; const int N=2e5+1; inline int read(){char ch=getchar();int f=1;while(ch<'0' || ch>'9') {if(ch=='-') f=-f; ch=getchar();}
int x=0;while(ch>='0' && ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();return x*f;} int T,n;
char s[N]; int main(){
T=read(); while(T--) {
scanf("%s",s);
n=strlen(s);
int k=-1,maxi=0; //k是上一个 R 的位置。因为 s 数组从 0 开始,所以这里从 -1 开始
for(int i=0;i<n;i++)
if(s[i]=='R') {
maxi=max(i-k,maxi); //与上一个 R 的位置的距离
k=i; //更新 R 的位置
}
printf("%d\n",max(maxi,n-k)); //最后一个 R 到终点的距离也算一个答案
}
return 0;
}

CF1324C Frog Jumps 题解的更多相关文章

  1. CF1407D Discrete Centrifugal Jumps 题解

    蒟蒻语 写了 \(100\) 行的 线段树上ST表维护二分维护单调栈维护dp, 结果最后发现只要俩单调栈就好了 = = 蒟蒻解 首先 \(dp_i\) 表示从 \(1\) 楼到 \(i\) 楼要跳几次 ...

  2. Codeforces Round #627 (Div. 3) C - Frog Jumps(逻辑)

    题意: 有一个每个单元标明移动方向的长为n的序列,每次移动不能超过距离k,问能够从0移动到n+1的k的最小值. 思路: k=最长连续L序列长度+1. #include <bits/stdc++. ...

  3. CF1077A Frog Jumping 题解

    Content 在一个数轴上有一个动点,初始时在 \(0\) 这个位置上,接下来有若干次操作,对于第 \(i\) 次操作: 如果 \(i\) 是奇数,那么动点往右移 \(a\) 个单位. 如果 \(i ...

  4. Codeforces Round #342 (Div 2) 解题报告

    除夕夜之有生之年CF第一场 下午从奶奶家回到姥姥家,一看还有些时间,先吃点水果陪姥姥姥爷聊了会儿,再一看表,5:20....woc已经开场20分钟了...于是抓紧时间乱搞.. **A. Guest F ...

  5. Groovy脚本基础全攻略

    1 背景 Groovy脚本基于Java且拓展了Java,所以从某种程度来说掌握Java是学习Groovy的前提,故本文适用于不熟悉Groovy却想快速得到Groovy核心基础干货的Java开发者(注意 ...

  6. Codeforces Round #627 (Div. 3)

    1324A - Yet Another Tetris Problem(思维) 题意 给一个数组,每一个数组中的元素大小表示在竖直方向的方块数量,元素相邻怎竖直方向的方块也相邻,类似于俄罗斯方块当底层被 ...

  7. Groovy系列(5)- Groovy IO操作

    IO操作 Groovy为I/O操作提供了许多帮助方法,虽然你可以在Groovy中用标准Java代码来实现I/O操作,不过Groovy提供了大量的方便的方式来操作File.Stream.Reader等等 ...

  8. 2017-2018 ACM-ICPC Latin American Regional Programming Contest J - Jumping frog 题解(gcd)

    题目链接 题目大意 一只青蛙在长度为N的字符串上跳跃,"R"可以跳上去,"P"不可以跳上去. 字符串是环形的,N-1和0相连. 青蛙的跳跃距离K的取值范围是[1 ...

  9. CF53C Little Frog 题解

    Content 有一只小青蛙想游历 \(n\) 块土堆,它现在在 \(1\) 号土堆上,每次可以跳跃任意距离到达另外的一个土堆.它想让每次跳跃的距离都不相等,试找到这样的一个方案. 数据范围:\(1\ ...

随机推荐

  1. JavaScript中的document.fullscreenEnabled

    本文主要讲述了: 什么是document.fullscreenEnabled 作用 兼容性 正文 什么是document.fullscreenEnabled document.fullscreenEn ...

  2. 单点登录CAS系列第06节之客户端配置单点登录

    原理 纯web.xml 借助Spring 注意 代码 测试 原理 这里用的是:cas-client-core-3.4.0.jar(2015-07-21发布的) 下载地址为:http://mvnrepo ...

  3. 杂记:OSX 安装openssl

    因为工作中要用到openssl中提供的MD5.SHA等摘要算法,通过brew install openssl安装的openssl在C文件中找不到相应的头文件.按照网上的教程各种修改之后还是找不到相应的 ...

  4. Book. Effective C++ item2-尽量使用const, enum, inline替换#define

    ##常规变量 c++里面的#define后面的定义部分,是不算代码的一部分的.所以如果你使用#define: #define ASPECT_RATIO 1.653 你希望这个代号ASPECT RATI ...

  5. 使用Lucene.Net做一个简单的搜索引擎-全文索引

    Lucene.Net Lucene.net是Lucene的.net移植版本,是一个开源的全文检索引擎开发包,即它不是一个完整的全文检索引擎,而是一个全文检索引擎的架构,提供了完整的查询引擎和索引引擎. ...

  6. Java入门教程十三(多线程)

    线程的概念 单纯种以一个任务完成以后再进行下一个任务的模式进行,这样下一个任务的开始必须等待前一个任务的结束,只有一个任务完成后才能进行下一个任务.Java 语言提供了并发机制,允许开发人员在程序中执 ...

  7. 2018 C笔试题

    ⼀.单项选择题(15⼩题,每⼩题2分,共30分)  解析:[传值调用],实参和形参之间传递的是“地址”  解析:[优先级]:算术运算符 > 关系运算符  >   赋值运算符    [结核性 ...

  8. Apple App签名机制

    概览 数字签名 签名机制与验证过程 操作流程 数字签名 摘要算法 将任意长度文本通过一个算法得到一个固定长度的文本. 源文本不同,计算结果必然不同 无法从结果反推源 例如,MD5和SHA算法 非对称加 ...

  9. py基础之数据类型及基本语法

    '''python中有五种数据类型,分别是整数.浮点数.字符串.布尔值.空值'''a = 1b = 2.0c = 'hello,world'print (a,b,c)#a是整数,b是浮点数,c是字符串 ...

  10. JavaScript常见的六种继承方式

    前言 面向对象编程很重要的一个方面,就是对象的继承.A 对象通过继承 B 对象,就能直接拥有 B 对象的所有属性和方法.这对于代码的复用是非常有用的. 大部分面向对象的编程语言,都是通过"类 ...