实在懒得复制题干了 *传送

1.定义

*如果图G(有向图或者无向图)中所有边一次仅且一次行遍所有顶点的通路称作欧拉通路。
*如果图G中所有边一次仅且一次行遍所有顶点的回路称作欧拉回路。
*具有欧拉回路的图称为欧拉图(简称E图)。具有欧拉通路但不具有欧拉回路的图称为半欧拉图。

2. 定理及推论

无向图G存在欧拉通路的充要条件是:

1) 当G是仅有两个奇度结点的连通图时,G的欧拉通路必以此两个结点为端点。
2) 当G是无奇度结点的连通图时,G必有欧拉回路。

有向图D存在欧拉通路的充要条件是:

推论2:
1) 当D除出、入度之差为1,-1的两个顶点之外,其余顶点的出度与入度都相等时,D的有向欧拉通路必以出、入度之差为1的顶点作为始点,以出、入度之差为-1的顶点作为终点。
2) 当D的所有顶点的出、入度都相等时,D中存在有向欧拉回路

求解:

A.  DFS搜索求解欧拉回路

基本思路:利用欧拉定理判断出一个图存在欧拉回路或欧拉通路后,选择一个正确的起始顶点,用DFS算法遍历所有的边(每一条边只遍历一次),遇到走不通就回退。在搜索前进方向上将遍历过的边按顺序记录下来。这组边的排列就组成了一条欧拉通路或回路。

 #include<cstdio>
 #include<stdio.h>
 #include<cstring>
 #include<algorithm>
 #define MAX 2010
 using namespace std;
 int maps[MAX][MAX];
 int in[MAX];
 int t[MAX];
 int flag;
 int k;
 int Max,Min;
 int DFS(int x)
 {
     int i;
     for(i=Min;i<=Max;i++)
     {
         if(maps[x][i])///从任意一个与它相连的点出发
         {
             maps[x][i]--;///删去遍历完的边
             maps[i][x]--;
             DFS(i);
         }
     }
     t[++k]=x;///记录路径,因为是递归所有倒着记
 }
 int main()
 {
     int n,i,x,y;
     Max=-;
     Min=;
     flag=;
     scanf("%d",&n);
     ;i<=n;i++)
     {
         scanf("%d%d",&x,&y);
         maps[x][y]++;
         maps[y][x]++;
         Max=max(x,max(y,Max));
         Min=min(x,min(y,Min));
         in[x]++;
         in[y]++;
     }
     for(i=Min;i<=Max;i++)
     {
         )///存在奇度点,说明是欧拉通路
         {
             flag=;
             DFS(i);
             break;
         }
     }
     if(!flag)///全为偶度点,从标号最小的开始找
     {
         DFS(Min);
     }
     ;i--)
     {
         printf("%d\n",t[i]);
     }
     ;
 }

B.  Fleury(佛罗莱)算法

 #include <cstdlib>
 #include <cstring>
 #include <cstdio>
 #include <iostream>
 #include <algorithm>
 using namespace std;
 ];
 int top;
 int N,M;
 ][];
 void dfs(int x)
 {
     int i;
     top++;
     ans[top]=x;
     ; i<=N; i++)
     {
         )
         {
             mp[x][i]=mp[i][x]=;///删除此边
             dfs(i);
             break;
         }
     }
 }

 void fleury(int x)
 {
     int brige,i;
     top=;
     ans[top]=x;///将起点放入Euler路径中
     )
     {
         brige=;
         ; i<=N; i++) /// 试图搜索一条边不是割边(桥)
         {
             )///存在一条可以扩展的边
             {
                 brige=;
                 break;
             }
         }
         if (!brige)/// 如果没有点可以扩展,输出并出栈
         {
             printf("%d ", ans[top]);
             top--;
         }
         else     /// 否则继续搜索欧拉路径
         {
             top--;///为了回溯
             dfs(ans[top+]);
         }
     }
 }

 int main()
 {
     int x,y,deg,num,start,i,j;
     scanf("%d%d",&N,&M);
     memset(mp,,sizeof (mp));
     ;i<=M; i++)
     {
         scanf("%d%d",&x,&y);
         mp[x][y]=;
         mp[y][x]=;
     }
     num=;
     start=;///这里初始化为1
     ; i<=N; i++)
     {
         deg=;
         ; j<=N; j++)
         {
             deg+=mp[i][j];
         }
         ==)///奇度顶点
         {
             start=i;
             num++;
         }
     }
     ||num==)
     {
         fleury(start);
     }
     else
     {
         puts("No Euler path");
     }
     ;
 }

那这道题就是一个欧拉回路的板子

 #include<iostream>
 #include<cstdio>
 #include<cmath>
 using namespace std;
 ][];//记录两个点之间的路径个数
 ];//辅助记录奇点
 ];//记录路径
 ;
 ,Min=1e9;
 int DFS(int x)
 {
     int i;
     for(i=Min;i<=Max;i++)
     {
         if(map[x][i])
         {
             map[x][i]--;
             map[i][x]--;
             DFS(i);
         }
     }
     t[++k]=x;
 }
 int main()
 {
     scanf("%d",&n);
     ;i<=n;++i)
     {
         scanf("%d%d",&x,&y);
         map[x][y]++;
         map[y][x]++;
         du[x]++;
         du[y]++;
         Max=max(Max,max(x,y));
         Min=min(Min,min(x,y));
     }
     ;
     ;i<=Max;++i)
     {
         )
         {
             start=i;
             break;
         }
     }
     DFS(start);
     ;i--)
     {
         printf("%d\n",t[i]);
     }
     ;
 }

欧拉回路--P2731 骑马修栅栏 Riding the Fences的更多相关文章

  1. P2731 骑马修栅栏 Riding the Fences 题解(欧拉回路)

    题目链接 P2731 骑马修栅栏 Riding the Fences 解题思路 存图+简单\(DFS\). 坑点在于两种不同的输出方式. #include<stdio.h> #define ...

  2. 洛谷P2731 骑马修栅栏 Riding the Fences

    P2731 骑马修栅栏 Riding the Fences• o 119通过o 468提交• 题目提供者该用户不存在• 标签USACO• 难度普及+/提高 提交 讨论 题解 最新讨论 • 数据有问题题 ...

  3. 洛谷 P2731 骑马修栅栏 Riding the Fences 解题报告

    P2731 骑马修栅栏 Riding the Fences 题目背景 Farmer John每年有很多栅栏要修理.他总是骑着马穿过每一个栅栏并修复它破损的地方. 题目描述 John是一个与其他农民一样 ...

  4. 洛谷 P2731 骑马修栅栏 Riding the Fences

    P2731 骑马修栅栏 Riding the Fences 题目背景 Farmer John每年有很多栅栏要修理.他总是骑着马穿过每一个栅栏并修复它破损的地方. 题目描述 John是一个与其他农民一样 ...

  5. P2731 骑马修栅栏 Riding the Fences

    题目描述 John是一个与其他农民一样懒的人.他讨厌骑马,因此从来不两次经过一个栅栏.你必须编一个程序,读入栅栏网络的描述,并计算出一条修栅栏的路径,使每个栅栏都恰好被经过一次.John能从任何一个顶 ...

  6. luogu P2731 骑马修栅栏 Riding the Fences

    入度为奇数的点,搜他. 最好邻接矩阵... #include<cstdio> #include<iostream> #define R register int using n ...

  7. LG2731 骑马修栅栏 Riding the Fences

    题意 John是一个与其他农民一样懒的人.他讨厌骑马,因此从来不两次经过一个栅栏.你必须编一个程序,读入栅栏网络的描述,并计算出一条修栅栏的路径,使每个栅栏都恰好被经过一次.John能从任何一个顶点( ...

  8. 「USACO」「LuoguP2731」 骑马修栅栏 Riding the Fences(欧拉路径

    Description Farmer John每年有很多栅栏要修理.他总是骑着马穿过每一个栅栏并修复它破损的地方. John是一个与其他农民一样懒的人.他讨厌骑马,因此从来不两次经过一个栅栏.你必须编 ...

  9. USACO Section 3.3 骑马修栅栏 Riding the Fences

    题目背景 Farmer John每年有很多栅栏要修理.他总是骑着马穿过每一个栅栏并修复它破损的地方. 题目描述 John是一个与其他农民一样懒的人.他讨厌骑马,因此从来不两次经过一个栅栏.你必须编一个 ...

随机推荐

  1. spark动态资源(executor)分配

    spark动态资源调整其实也就是说的executor数目支持动态增减,动态增减是根据spark应用的实际负载情况来决定. 开启动态资源调整需要(on yarn情况下) 1.将spark.dynamic ...

  2. php 键值数组搜索查询

    php  键值数组查询 ,需要先将其转换为纯数组,然后才能用in_array 进行搜索. $arr_combos = [ ['id' => '1001', 'value' => 'zs' ...

  3. 吴裕雄 Bootstrap 前端框架开发——Bootstrap 辅助类:内容居中

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  4. suse下静默方式安装oracle(无图形界面)

    以 http://www.cnblogs.com/0201zcr/p/4728241.html 为主 以 http://www.cnblogs.com/jyzhao/p/5001782.html 为参 ...

  5. Java笔记--异常

    1.异常分为两类: --1)Error:Java虚拟机无法解决的严重问题(例如资源耗尽等): --2)Exception:其他编程错误或偶然的外在因素导致的一般性问题(例如空指针异常.读取的文件不存在 ...

  6. 页面的html调试

    点击页面按下键盘的F12,或者鼠标右键选择检查(N) 会弹出一个窗口,这个窗口就是调试窗口 如上图所示,第一个图标是标签元素选择器,点击使用后,在页面上移动,会在Elements的区域找到你鼠标选中的 ...

  7. 2020牛客寒假算法基础集训营4 I 匹配星星

    https://ac.nowcoder.com/acm/contest/3005/I 又做麻烦了,悲催... 将所有星星按x坐标为第一关键字,z为第二关键字排好序 那么一个z=1的星星匹配的是x比它小 ...

  8. 在ubuntu中使用ipython

    python自带的shell实在是不怎么好用 大家可以用一下ipython这个软件,它可以自动缩进,补齐,语法高亮等 安装办法: sudo apt install ipython #这个是安装2.7的 ...

  9. Golang的标识符命名规则

    Golang的标识符命名规则 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.关键字 1>.Go语言有25个关键字 Go语言的25个关键字如下所示: break,defau ...

  10. 网卡工作原理和wireshark混杂模式

    通过设置网卡为混杂模式就能捕获局域网内所有发包内容,包括非广播包和非发给自己主机的数据包 这是为什么呢? 即主机A发送一个数据包给主机B,我作为主机C怎么也能截获这个数据包呢,原理是什么? 我的网卡为 ...