题目

The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U and V as descendants. Given any two nodes in a binary tree, you are supposed to find their LCA.

Input Specification:

Each input file contains one test case. For each case, the first line gives two positive integers: M (≤ 1,000), the number of pairs of nodes to be tested; and N (≤ 10,000), the number of keys in the binary tree, respectively. In each of the following two lines, N distinct integers are given as the inorder and preorder traversal sequences of the binary tree, respectively. It is guaranteed that the binary tree can be uniquely determined by the input sequences. Then M lines follow, each contains a pair of integer keys U and V. All the keys are in the range of int.

Output Specification:

For each given pair of U and V, print in a line LCA of U and V is A. if the LCA is found and A is the key. But if A is one of U and V, print X is an ancestor of Y. where X is A and Y is the other node. If U or V is not found in the binary tree, print in a line ERROR: U is not found. or ERROR: V is not found. or ERROR: U and V are not found.

Sample Input:

6 8

7 2 3 4 6 5 1 8

5 3 7 2 6 4 8 1

2 6

8 1

7 9

12 -3

0 8

99 99

Sample Output:

LCA of 2 and 6 is 3.

8 is an ancestor of 1.

ERROR: 9 is not found.

ERROR: 12 and -3 are not found.

ERROR: 0 is not found.

ERROR: 99 and 99 are not found.

题目分析

已知二叉树中序和前序序列,求每个测试用例两个节点的最近公共祖先节点

解题思路

二叉树中序+前序唯一确定一棵二叉树,利用(前序第一个节点root在中序中将中序分为左子树和右子树)查找LCA

  1. u,v在root两边,则root为u,v最近公共祖先节点
  2. u,v都在root左边,则最近公共祖先在root左子树,递归查找
  3. u,v都在root右边,则最近公共祖先在root右子树,递归查找
  4. u==root,则u是v的最近公共祖先节点
  5. v==root,则v是u的最近公共祖先节点

Code

#include <iostream>
#include <map>
#include <vector>
using namespace std;
vector<int> pre,in;
map<int,int> pos;
void lca(int inL,int inR,int preL,int u,int v) {
if(inL>inR)return;
int rin=pos[pre[preL]], uin=pos[u], vin=pos[v];
if((uin<rin&&vin>rin)||(vin<rin&&uin>rin)) {
printf("LCA of %d and %d is %d.\n",u,v,in[rin]);
} else if(uin<rin&&vin<rin) { //u,v在左子树
lca(inL, rin-1, preL+1,u,v);
} else if(uin>rin&&vin>rin) { //u,v在右子树
lca(rin+1, inR, preL+(rin-inL)+1,u,v);
} else if(uin==rin) { //u是v lca
printf("%d is an ancestor of %d.\n",u,v);
} else if(vin==rin) { //v是u lca
printf("%d is an ancestor of %d.\n",v,u);
}
}
int main(int argc,char * argv[]) {
int m,n,u,v;
scanf("%d %d",&m,&n);
pre.resize(n+1);
in.resize(n+1);
for(int i=1; i<=n; i++) {
scanf("%d",&in[i]);
pos[in[i]]=i;
}
for(int i=1; i<=n; i++) {
scanf("%d",&pre[i]);
}
for(int i=0; i<m; i++) {
scanf("%d %d",&u,&v);
if(pos[u]==0&&pos[v]==0) { //都没找到
printf("ERROR: %d and %d are not found.\n",u,v);
} else if(pos[u]==0||pos[v]==0) {
printf("ERROR: %d is not found.\n",pos[u]==0?u:v);
} else {
lca(1,n,1,u,v);
}
}
return 0;
}

PAT Advanced 1151 LCA in a Binary Tree (30) [树的遍历,LCA算法]的更多相关文章

  1. PAT Advanced 1102 Invert a Binary Tree (25) [树的遍历]

    题目 The following is from Max Howell @twitter: Google: 90% of our engineers use the sofware you wrote ...

  2. PAT Advanced 1135 Is It A Red-Black Tree (30) [红⿊树]

    题目 There is a kind of balanced binary search tree named red-black tree in the data structure. It has ...

  3. PAT Advanced 1115 Counting Nodes in a BST (30) [⼆叉树的遍历,BFS,DFS]

    题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...

  4. PAT (Advanced Level) 1102. Invert a Binary Tree (25)

    简单题. #include<cstdio> #include<cstring> #include<cmath> #include<vector> #in ...

  5. PAT Advanced 1090 Highest Price in Supply Chain (25) [树的遍历]

    题目 A supply chain is a network of retailers(零售商), distributors(经销商), and suppliers(供应商)–everyone inv ...

  6. PAT_A1151#LCA in a Binary Tree

    Source: PAT A1151 LCA in a Binary Tree (30 分) Description: The lowest common ancestor (LCA) of two n ...

  7. PAT 1151 LCA in a Binary Tree[难][二叉树]

    1151 LCA in a Binary Tree (30 分) The lowest common ancestor (LCA) of two nodes U and V in a tree is ...

  8. PAT-1151(LCA in a Binary Tree)+最近公共祖先+二叉树的中序遍历和前序遍历

    LCA in a Binary Tree PAT-1151 本题的困难在于如何在中序遍历和前序遍历已知的情况下找出两个结点的最近公共祖先. 可以利用据中序遍历和前序遍历构建树的思路,判断两个结点在根节 ...

  9. 【PAT 甲级】1151 LCA in a Binary Tree (30 分)

    题目描述 The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has bo ...

随机推荐

  1. SciPy 常量

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  2. 深入解读EOS源代码之——区块链内核

    EOS进入大众视野并且受到热议已经有一段时间了,各种热捧和争议过后,是时候让我们静下来搞清楚EOS到底是一个什么样的产品.本文从技术角度深入的分析EOS底层设计,从源代码入手,一层层揭开EOS区块链底 ...

  3. (转)浅谈 Linux 内核无线子系统

    前言 Linux 内核是如何实现无线网络接口呢?数据包是通过怎样的方式被发送和接收呢? 刚开始工作接触 Linux 无线网络时,我曾迷失在浩瀚的基础代码中,寻找具有介绍性的材料来回答如上面提到的那些高 ...

  4. PLCsim 软件模拟OB86故障

    用上一节 组态DP主站与标准从站的方法 组态了网络 实现了 将profibus –dp 标准从站 ET200M 下 输入地址为IW2 接口的状态 读取到 主机 DP-315-2DP 的QW0 变量以来 ...

  5. Kubernetes 集群日志管理【转】

    Kubernetes 开发了一个 Elasticsearch 附加组件来实现集群的日志管理.这是一个 Elasticsearch.Fluentd 和 Kibana 的组合.Elasticsearch ...

  6. 侯捷C++学习(一)

    //c++学习//标准库非常重要//要规范自己的代码complex c1(2,1);complex c2;complex* pc = new complex(0,1);string s1(" ...

  7. Maven添加Tomcat插件实现热部署

    Maven热部署,顾名思义就是可以不影响项目在服务器中的运行情况,可以实现项目代码的更新,减少启动,编译时间,达到快速开发的目的,也不需要手动拷贝war包到远程项目,可以直接将项目以及war包部署到远 ...

  8. oracle的存储过程和函数有什么区别?

    Oracle中的函数与存储过程的区别:      A:函数必须有返回值,而过程没有. B:函数可以单独执行.而过程必须通过execute执行. C:函数可以嵌入到SQL语句中执行.而过程不行. 其实我 ...

  9. Golang gin开源实例——表设计

    UML Model 基本模型定义 type Model struct { ID int `gorm:"primary_key" json:"id"` Creat ...

  10. Spark Scheduler 模块(下)

    Scheduler 模块中最重要的两个类是 DAGScheduler 和 TaskScheduler.上篇讲了 DAGScheduler,这篇讲 TaskScheduler. TaskSchedule ...