Mayor's posters
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 43507   Accepted: 12693

Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:

  • Every candidate can place exactly one poster on the wall.
  • All posters are of the same height equal to the height of
    the wall; the width of a poster can be any integer number of bytes (byte
    is the unit of length in Bytetown).
  • The wall is divided into segments and the width of each segment is one byte.
  • Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is
enough place for all candidates). When the electoral campaign was
restarted, the candidates were placing their posters on the wall and
their posters differed widely in width. Moreover, the candidates started
placing their posters on wall segments already occupied by other
posters. Everyone in Bytetown was curious whose posters will be visible
(entirely or in part) on the last day before elections.

Your task is to find the number of visible posters when all the
posters are placed given the information about posters' size, their
place and order of placement on the electoral wall.

Input

The
first line of input contains a number c giving the number of cases that
follow. The first line of data for a single case contains number 1 <=
n <= 10000. The subsequent n lines describe the posters in the order
in which they were placed. The i-th line among the n lines contains two
integer numbers li and ri which are the number of the wall
segment occupied by the left end and the right end of the i-th poster,
respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.

Output

For each input data set print the number of visible posters after all the posters are placed.

The picture below illustrates the case of the sample input.

Sample Input

1
5
1 4
2 6
8 10
3 4
7 10

Sample Output

4

Source

关于区间离散的一些知识:

通俗点说,离散化就是压缩区间,使原有的长区间映射到新的短区间,但是区间压缩前后的覆盖关系不变。举个例子:

有一条1到10的数轴(长度为9),给定4个区间[2,4] [3,6] [8,10] [6,9],覆盖关系就是后者覆盖前者,每个区间染色依次为 1 2 3 4。

现在我们抽取这4个区间的8个端点,2 4 3 6 8 10 6 9

然后删除相同的端点,这里相同的端点为6,则剩下2 4 3 6 8 10 9

对其升序排序,得2 3 4 6 8 9 10

然后建立映射

2     3     4     6     8     9   10

↓     ↓      ↓     ↓     ↓     ↓     ↓

1     2     3     4     5     6     7

那么新的4个区间为 [1,3] [2,4] [5,7] [4,6],覆盖关系没有被改变。新数轴为1到7,即原数轴的长度从9压缩到6,显然构造[1,7]的线段树比构造[1,10]的线段树更省空间,搜索也更快,但是求解的结果却是一致的。

离散化时有一点必须要注意的,就是必须先剔除相同端点后再排序,这样可以减少参与排序元素的个数,节省时间。

代码:

 /*poj 2528 线段树+离散化*/
//#define LOCAL
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<iostream>
#include<algorithm> #define MAXN 10000010
#define maxn 10005
using namespace std; struct node
{
int st;
int en;
}ss[maxn]; int lis[maxn<<]; //离散化素组
int hash[MAXN]; //运用哈希表
int ans;
int vis[maxn]; struct post
{
int lef,rig;
int mid(){
return lef+((rig-lef)>>);
}
int id; //颜色种类
int type; //用于延迟
}poster[maxn<<]; void build_seg(int left,int right,int pos)
{
poster[pos].lef=left;
poster[pos].rig=right;
poster[pos].id=;
poster[pos].type=;
if(left==right) return ;
int mid=poster[pos].mid();
build_seg(left,mid,pos<<);
build_seg(mid+,right,pos<<|);
} void Update(int left,int right,int pos,int id)
{
if(poster[pos].lef>=left&&poster[pos].rig<=right)
{
poster[pos].id=id;
poster[pos].type=id;
return ;
}
if(poster[pos].type&&poster[pos].lef!=poster[pos].rig)
{
//向下更新一次
poster[pos<<].type=poster[pos<<|].type=poster[pos].type;
poster[pos<<].id=poster[pos<<|].id=poster[pos].id;
poster[pos].type=;
}
int mid=poster[pos].mid();
if(mid>=left)
Update(left,right,pos<<,id);
if(mid<right)
Update(left,right,pos<<|,id);
if(poster[pos].lef!=poster[pos].rig)
{
if(poster[pos<<].id==poster[pos<<|].id)
poster[pos].id=poster[pos<<].id;
else
poster[pos].id=; //说明有多种可能,需要再向下查询统计
}
} void query(int left,int right,int pos) //进行统计
{
if(poster[pos].lef<left||poster[pos].rig>right)
return ;
if(poster[pos].id)
{
if(!vis[poster[pos].id])
{
ans++;
vis[poster[pos].id]=true;
}
return;
}
if(poster[pos].lef!=poster[pos].rig){
query(left,right,pos<<);
query(left,right,pos<<|);
}
} int main()
{
#ifdef LOCAL
freopen("test.in","r",stdin);
#endif
int cas,n;
scanf("%d",&cas);
while(cas--)
{
scanf("%d",&n);
int k=;
memset(hash,,sizeof(hash));
memset(vis,,sizeof(vis)); //初始化为0表示都没有访问过
for(int i=;i<n;i++)
{
scanf("%d %d",&ss[i].st,&ss[i].en);
lis[k++]=ss[i].st;
lis[k++]=ss[i].en;
}
sort(lis,lis+k); //升序
int j=;
for(int i=;i<k;i++)
{
if(hash[lis[i]]==)
hash[lis[i]]=++j; //编号从1起
}
build_seg(,j,);
for(int i=;i<n;i++){
Update(hash[ss[i].st],hash[ss[i].en],,i+);
}
ans=;
query(,j,);
printf("%d\n",ans);
}
return ;
}

poj-----(2528)Mayor's posters(线段树区间更新及区间统计+离散化)的更多相关文章

  1. POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化)

    POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化) 题意分析 贴海报,新的海报能覆盖在旧的海报上面,最后贴完了,求问能看见几张海报. 最多有10000张海报,海报 ...

  2. poj 2528 Mayor's posters 线段树+离散化技巧

    poj 2528 Mayor's posters 题目链接: http://poj.org/problem?id=2528 思路: 线段树+离散化技巧(这里的离散化需要注意一下啊,题目数据弱看不出来) ...

  3. poj 2528 Mayor's posters 线段树区间更新

    Mayor's posters Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=2528 Descript ...

  4. POJ 2528 Mayor's posters (线段树区间更新+离散化)

    题目链接:http://poj.org/problem?id=2528 给你n块木板,每块木板有起始和终点,按顺序放置,问最终能看到几块木板. 很明显的线段树区间更新问题,每次放置木板就更新区间里的值 ...

  5. POJ 2528 Mayor's posters(线段树,区间覆盖,单点查询)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 45703   Accepted: 13239 ...

  6. POJ 2528 Mayor's posters(线段树+离散化)

    Mayor's posters 转载自:http://blog.csdn.net/winddreams/article/details/38443761 [题目链接]Mayor's posters [ ...

  7. poj 2528 Mayor's posters 线段树+离散化 || hihocode #1079 离散化

    Mayor's posters Description The citizens of Bytetown, AB, could not stand that the candidates in the ...

  8. poj 2528 Mayor's posters(线段树)

    题目:http://poj.org/problem?id=2528 题意:有一面墙,被等分为1QW份,一份的宽度为一个单位宽度.现在往墙上贴N张海报,每张海报的宽度是任意的, 但是必定是单位宽度的整数 ...

  9. POJ 2528 Mayor's posters (线段树)

    题目链接:http://poj.org/problem?id=2528 题目大意:有一个很上的面板, 往上面贴海报, 问最后最多有多少个海报没有被完全覆盖 解题思路:将贴海报倒着想, 对于每一张海报只 ...

  10. POJ 2528 Mayor's posters (线段树+离散化)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:75394   Accepted: 21747 ...

随机推荐

  1. UVA 11404 五 Palindromic Subsequence

     Palindromic Subsequence Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu ...

  2. CCNA training notes

    5/29: vlan:virtual lan, 通过PVID来将物理上连通的host/PC划分到不同的局域网. switch的每个port有access与trunk两种mode,trunk模式的por ...

  3. chmod 无法修改磁盘文件的权限解释 (光盘文件就是只读的,修改不了的)

    我们知道root用户是linux执行权限最高的管理者用户,他可以进行任何的权限操作:然而我们的操作系统同样也考虑过这样的弊端,就是当我们使用者并不了解文件属性和重要性时会给予我们使用者提示: 举个例子 ...

  4. genome MuSic安装

    系统:ubuntu 15.04全程在root权限下安装 首先安装软件samtools ,必须是samtools-0.1.19 版本tar jxf samtools-0.1.19.tar.bz2cd s ...

  5. ServiceStack.OrmLite 笔记2 -增

    ServiceStack.OrmLite 笔记2 这篇主要介绍 增加 db.Insert(new Employee { Id = 1, Name = "Employee 1" }) ...

  6. Javascript屏蔽回车提交表单

    html利用input防止回车提交 默认情况下,单个输入框,无论按钮的type="submit"还是type="button"类型,回车即提交. 1.当type ...

  7. Spring 读书笔记-----使用Spring容器(一)

    pring有两个核心接口:BeanFactory和ApplicationContext,其中ApplicationContext是BeanFactory的子接口.他们都可代表Spring容器,Spri ...

  8. JavaScript基础知识点

    本书目录 第一章:  JavaScript语言基础 第二章:  JavaScript内置对象第三章:  窗口window对象第四章:  文档document对象第五章:  表单form对象第六章:   ...

  9. Java中去除StringBuffer最后一个字符

    原文:http://www.cnblogs.com/shaozhiheng/p/3661714.html 由于编写了这么一段代码: Iterator it3 = set.iterator(); whi ...

  10. Spring集成JPA提示Not an managed type

    在做Spring与JPA集成时,出现问题如下: Caused by: java.lang.IllegalArgumentException: Not an managed type: class co ...