Mayor's posters
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 43507   Accepted: 12693

Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:

  • Every candidate can place exactly one poster on the wall.
  • All posters are of the same height equal to the height of
    the wall; the width of a poster can be any integer number of bytes (byte
    is the unit of length in Bytetown).
  • The wall is divided into segments and the width of each segment is one byte.
  • Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is
enough place for all candidates). When the electoral campaign was
restarted, the candidates were placing their posters on the wall and
their posters differed widely in width. Moreover, the candidates started
placing their posters on wall segments already occupied by other
posters. Everyone in Bytetown was curious whose posters will be visible
(entirely or in part) on the last day before elections.

Your task is to find the number of visible posters when all the
posters are placed given the information about posters' size, their
place and order of placement on the electoral wall.

Input

The
first line of input contains a number c giving the number of cases that
follow. The first line of data for a single case contains number 1 <=
n <= 10000. The subsequent n lines describe the posters in the order
in which they were placed. The i-th line among the n lines contains two
integer numbers li and ri which are the number of the wall
segment occupied by the left end and the right end of the i-th poster,
respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.

Output

For each input data set print the number of visible posters after all the posters are placed.

The picture below illustrates the case of the sample input.

Sample Input

1
5
1 4
2 6
8 10
3 4
7 10

Sample Output

4

Source

关于区间离散的一些知识:

通俗点说,离散化就是压缩区间,使原有的长区间映射到新的短区间,但是区间压缩前后的覆盖关系不变。举个例子:

有一条1到10的数轴(长度为9),给定4个区间[2,4] [3,6] [8,10] [6,9],覆盖关系就是后者覆盖前者,每个区间染色依次为 1 2 3 4。

现在我们抽取这4个区间的8个端点,2 4 3 6 8 10 6 9

然后删除相同的端点,这里相同的端点为6,则剩下2 4 3 6 8 10 9

对其升序排序,得2 3 4 6 8 9 10

然后建立映射

2     3     4     6     8     9   10

↓     ↓      ↓     ↓     ↓     ↓     ↓

1     2     3     4     5     6     7

那么新的4个区间为 [1,3] [2,4] [5,7] [4,6],覆盖关系没有被改变。新数轴为1到7,即原数轴的长度从9压缩到6,显然构造[1,7]的线段树比构造[1,10]的线段树更省空间,搜索也更快,但是求解的结果却是一致的。

离散化时有一点必须要注意的,就是必须先剔除相同端点后再排序,这样可以减少参与排序元素的个数,节省时间。

代码:

 /*poj 2528 线段树+离散化*/
//#define LOCAL
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<iostream>
#include<algorithm> #define MAXN 10000010
#define maxn 10005
using namespace std; struct node
{
int st;
int en;
}ss[maxn]; int lis[maxn<<]; //离散化素组
int hash[MAXN]; //运用哈希表
int ans;
int vis[maxn]; struct post
{
int lef,rig;
int mid(){
return lef+((rig-lef)>>);
}
int id; //颜色种类
int type; //用于延迟
}poster[maxn<<]; void build_seg(int left,int right,int pos)
{
poster[pos].lef=left;
poster[pos].rig=right;
poster[pos].id=;
poster[pos].type=;
if(left==right) return ;
int mid=poster[pos].mid();
build_seg(left,mid,pos<<);
build_seg(mid+,right,pos<<|);
} void Update(int left,int right,int pos,int id)
{
if(poster[pos].lef>=left&&poster[pos].rig<=right)
{
poster[pos].id=id;
poster[pos].type=id;
return ;
}
if(poster[pos].type&&poster[pos].lef!=poster[pos].rig)
{
//向下更新一次
poster[pos<<].type=poster[pos<<|].type=poster[pos].type;
poster[pos<<].id=poster[pos<<|].id=poster[pos].id;
poster[pos].type=;
}
int mid=poster[pos].mid();
if(mid>=left)
Update(left,right,pos<<,id);
if(mid<right)
Update(left,right,pos<<|,id);
if(poster[pos].lef!=poster[pos].rig)
{
if(poster[pos<<].id==poster[pos<<|].id)
poster[pos].id=poster[pos<<].id;
else
poster[pos].id=; //说明有多种可能,需要再向下查询统计
}
} void query(int left,int right,int pos) //进行统计
{
if(poster[pos].lef<left||poster[pos].rig>right)
return ;
if(poster[pos].id)
{
if(!vis[poster[pos].id])
{
ans++;
vis[poster[pos].id]=true;
}
return;
}
if(poster[pos].lef!=poster[pos].rig){
query(left,right,pos<<);
query(left,right,pos<<|);
}
} int main()
{
#ifdef LOCAL
freopen("test.in","r",stdin);
#endif
int cas,n;
scanf("%d",&cas);
while(cas--)
{
scanf("%d",&n);
int k=;
memset(hash,,sizeof(hash));
memset(vis,,sizeof(vis)); //初始化为0表示都没有访问过
for(int i=;i<n;i++)
{
scanf("%d %d",&ss[i].st,&ss[i].en);
lis[k++]=ss[i].st;
lis[k++]=ss[i].en;
}
sort(lis,lis+k); //升序
int j=;
for(int i=;i<k;i++)
{
if(hash[lis[i]]==)
hash[lis[i]]=++j; //编号从1起
}
build_seg(,j,);
for(int i=;i<n;i++){
Update(hash[ss[i].st],hash[ss[i].en],,i+);
}
ans=;
query(,j,);
printf("%d\n",ans);
}
return ;
}

poj-----(2528)Mayor's posters(线段树区间更新及区间统计+离散化)的更多相关文章

  1. POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化)

    POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化) 题意分析 贴海报,新的海报能覆盖在旧的海报上面,最后贴完了,求问能看见几张海报. 最多有10000张海报,海报 ...

  2. poj 2528 Mayor's posters 线段树+离散化技巧

    poj 2528 Mayor's posters 题目链接: http://poj.org/problem?id=2528 思路: 线段树+离散化技巧(这里的离散化需要注意一下啊,题目数据弱看不出来) ...

  3. poj 2528 Mayor's posters 线段树区间更新

    Mayor's posters Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=2528 Descript ...

  4. POJ 2528 Mayor's posters (线段树区间更新+离散化)

    题目链接:http://poj.org/problem?id=2528 给你n块木板,每块木板有起始和终点,按顺序放置,问最终能看到几块木板. 很明显的线段树区间更新问题,每次放置木板就更新区间里的值 ...

  5. POJ 2528 Mayor's posters(线段树,区间覆盖,单点查询)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 45703   Accepted: 13239 ...

  6. POJ 2528 Mayor's posters(线段树+离散化)

    Mayor's posters 转载自:http://blog.csdn.net/winddreams/article/details/38443761 [题目链接]Mayor's posters [ ...

  7. poj 2528 Mayor's posters 线段树+离散化 || hihocode #1079 离散化

    Mayor's posters Description The citizens of Bytetown, AB, could not stand that the candidates in the ...

  8. poj 2528 Mayor's posters(线段树)

    题目:http://poj.org/problem?id=2528 题意:有一面墙,被等分为1QW份,一份的宽度为一个单位宽度.现在往墙上贴N张海报,每张海报的宽度是任意的, 但是必定是单位宽度的整数 ...

  9. POJ 2528 Mayor's posters (线段树)

    题目链接:http://poj.org/problem?id=2528 题目大意:有一个很上的面板, 往上面贴海报, 问最后最多有多少个海报没有被完全覆盖 解题思路:将贴海报倒着想, 对于每一张海报只 ...

  10. POJ 2528 Mayor's posters (线段树+离散化)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:75394   Accepted: 21747 ...

随机推荐

  1. jQuery模拟鼠标点击事件失效的问题

    最近使用jQuery操作浏览器获取数据,需要对分页的信息进行处理,发现直接使用$('div#pager a.next').click();的这种写法无法触发点击事件. 使用trigger('click ...

  2. mysql中bigint、int、mediumint、smallint 和 tinyint的取值范围

    mysql数据库设计,其中,对于数据性能优化,字段类型考虑很重要,搜集了些资料,整理分享出来,这篇为有关mysql整型bigint.int.mediumint.smallint 和 tinyint的语 ...

  3. pupper基线加固

    1.  概述 puppet是一个开源的软件自动化配置和部署工具,它使用简单且功能强大,正得到了越来越多地关注,现在很多大型IT公司均在使用puppet对集群中的软件进行管理和部署,如google利用p ...

  4. CUBRID学习笔记 14 删除主键错误

    发生这样的问题.其实和别的数据库基本原因差不多.  就是外键冲突. 看看有没有外键引用这个表的主键. 然后删除外键. 就可以了 SELECT class_name FROM db_index WHER ...

  5. 用Jenkins+Gradle+Jetty实现持续集成、测试、部署

    自动集成有很多种方案,本例用到的工具是Jenkins(前身Hudson)+Gradle+Jetty,关于Gradle可参考上一篇,Gradle常见问题. 本例项目名称: WAP Jetty 安装Jen ...

  6. 36个炫丽的html5 canvas展示

    36个炫丽的html5 canvas展示http://html6game.com/2013/08/03/36-behind-the-html5-canvas-show.shtml 16个最好的CSS3 ...

  7. JavaWeb学习总结(十三)--数据库连接池

    一.数据库连接池的概念 用池来管理Connection,这可以重复使用Connection.有了池,所以我们就不用自己来创建Connection,而是通过池来获取Connection对象.当使用完Co ...

  8. 【Android界面实现】FragmentPagerAdapter与FragmentStatePagerAdapter使用详解与区别

    转载请注明出处: http://blog.csdn.net/zhaokaiqiang1992 FragmentPagerAdapter是android-support-v4支持包里面出现的一个新的适配 ...

  9. golang 资源

    1.Learning Go <学习Go语言> http://www.miek.nl/projects/learninggo/中文版http://mikespook.com/learning ...

  10. 转:一个Sqrt函数引发的血案

    转自:http://www.cnblogs.com/pkuoliver/archive/2010/10/06/1844725.html 源码下载地址:http://diducoder.com/sotr ...