P2737 [USACO4.1]麦香牛块Beef McNuggets

  • 13通过
  • 21提交
  • 题目提供者该用户不存在
  • 标签USACO
  • 难度普及+/提高

提交  讨论  题解

最新讨论

  • 暂时没有讨论

题目描述

农夫布朗的奶牛们正在进行斗争,因为它们听说麦当劳正在考虑引进一种新产品:麦香牛块。奶牛们正在想尽一切办法让这种可怕的设想泡汤。奶牛们进行斗争的策略之一是“劣质的包装”。“看,”奶牛们说,“如果你只用一次能装3块、6块或者10块的三种包装盒包装麦香牛块,你就不可能满足一次只想买1、2、4、5、7、8、11、14或者17块麦香牛块的顾客了。劣质的包装意味着劣质的产品。”

你的任务是帮助这些奶牛。给出包装盒的种类数N(1<=N<=10)和N个代表不同种类包装盒容纳麦香牛块个数的正整数(1<=i<=256),输出顾客不能用上述包装盒(每种盒子数量无限)买到麦香牛块的最大块数。如果所有购买方案都能得到满足或者不存在不能买到块数的上限,则输出0。 不能买到的最大块数(倘它存在)不超过2,000,000,000。

输入输出格式

输入格式:

第1行: 包装盒的种类数N

第2行到N+1行: 每个种类包装盒容纳麦香牛块的个数

输出格式:

输出文件只有一行数字:顾客不能用包装盒买到麦香牛块的最大块数或0(如果所有购买方案都能得到满足或者顾客不能买到的块数没有上限)。

输入输出样例

输入样例#1

3

3

6

10

输出样例#1

17

说明

题目翻译来自NOCOW。

USACO Training Section 4.1

分析:数据可以看作是无限的,即使是2,000,000,000,也绝对会超时,如果有个数学方法能够直接算出来就好了,至少要能缩小范围就好了.

如果p,q为自然数,且gcd(p,q) = 1,那么px + qy不能表示的最大数为pq - p - q,这个比较难证明(其实是我不会证明......)在实际做题中,范围可以只取pq,题目中给的最大的正整数为256,但是给出的方法是两个数的,本题会给多个数,我们可以把每两个数的结果算出,发现影响结果的就是最大的两个数,也就是256和255,鉴于数据比较小,取256^2即可,然后就是简单的枚举了,将0~256^2的数试着能不能用给定的数取到,然后从后往前扫描,如果不能取到的数大于256^2,输出0即可.

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> int n,a[],vis[]; int main()
{
scanf("%d", &n);
for (int i = ; i <= n; i++)
scanf("%d", &a[i]);
vis[] = ;
for (int i = ; i <= ; i++)
for (int j = ; j <= n; j++)
if (i >= a[j])
if (vis[i - a[j]])
vis[i] = ;
int ans = ;
for (int i = ; i >= ; i--)
{
if (!vis[i])
{
ans = i;
break;
}
}
if (ans > )
ans = ;
printf("%d\n", ans); return ;
}

洛谷P2737 [USACO4.1]麦香牛块Beef McNuggets的更多相关文章

  1. 洛谷——P2737 [USACO4.1]麦香牛块Beef McNuggets

    https://www.luogu.org/problemnew/show/P2737 题目描述 农夫布朗的奶牛们正在进行斗争,因为它们听说麦当劳正在考虑引进一种新产品:麦香牛块.奶牛们正在想尽一切办 ...

  2. 洛谷 P2737 [USACO4.1]麦香牛块Beef McNuggets Label:一点点数论 && 背包

    题目描述 农夫布朗的奶牛们正在进行斗争,因为它们听说麦当劳正在考虑引进一种新产品:麦香牛块.奶牛们正在想尽一切办法让这种可怕的设想泡汤.奶牛们进行斗争的策略之一是“劣质的包装”.“看,”奶牛们说,“如 ...

  3. P2737 [USACO4.1]麦香牛块Beef McNuggets(完全背包+数论确定上界)

    题目链接:https://www.luogu.org/problem/show?pid=2737 题目大意:农夫布朗的奶牛们正在进行斗争,因为它们听说麦当劳正在考虑引进一种新产品:麦香牛块.奶牛们正在 ...

  4. P2737 [USACO4.1]麦香牛块Beef McNuggets

    题目描述 农夫布朗的奶牛们正在进行斗争,因为它们听说麦当劳正在考虑引进一种新产品:麦香牛块.奶牛们正在想尽一切办法让这种可怕的设想泡汤.奶牛们进行斗争的策略之一是“劣质的包装”.“看,”奶牛们说,“如 ...

  5. P2737 [USACO4.1]麦香牛块Beef McNuggets 数学题 + 放缩思想

    https://www.luogu.org/problem/show?pid=2737#sub 先说一个结论:对于两个数p, q,且gcd(p, q) = 1(这个很重要,是条件来的).他们不能组合成 ...

  6. [USACO4.1]麦香牛块Beef McNuggets 题解报告

    题目描述 农夫布朗的奶牛们正在进行斗争,因为它们听说麦当劳正在考虑引进一种新产品:麦香牛块.奶牛们正在想尽一切办法让这种可怕的设想泡汤.奶牛们进行斗争的策略之一是"劣质的包装".& ...

  7. [USACO4.1]麦香牛块Beef McNuggets By cellur925

    题目描述 农夫布朗的奶牛们正在进行斗争,因为它们听说麦当劳正在考虑引进一种新产品:麦香牛块.奶牛们正在想尽一切办法让这种可怕的设想泡汤.奶牛们进行斗争的策略之一是“劣质的包装”.“看,”奶牛们说,“如 ...

  8. [Luogu2737] [USACO4.1]麦香牛块Beef McNuggets

    题目描述 农夫布朗的奶牛们正在进行斗争,因为它们听说麦当劳正在考虑引进一种新产品:麦香牛块.奶牛们正在想尽一切办法让这种可怕的设想泡汤.奶牛们进行斗争的策略之一是“劣质的包装”.“看,”奶牛们说,“如 ...

  9. [USACO4.1]麦香牛块Beef McNuggets

    https://www.luogu.org/problemnew/show/P2737 给出n个数ai,求这n个数不能累加出的最大的数 最大的数无限大或能凑出所有的自然数则输出0 n<=10,a ...

随机推荐

  1. VB脚本调用exe应用程序并传递参数

    VB脚本调用应用程序,并传递参数给exe应用程序: Private Sub CommandButton1_Click() Dim a a = Shell("D:\\ExperimentLin ...

  2. 在mac上安装svn客户端

    mac 10.8上面,默认是没有svn客户端的,可以通过以下两种方式来安装:    1.单独安装xcode命令行工具,安装完成后,在终端中就可以使用svn命令了,目前版本是1.6.18:    2.去 ...

  3. 黄聪:MYSQL5.6缓存性能优化my.ini文件配置方案

    使用MYSQL版本:5.6 [client] …… default-character-set=gbk default-storage-engine=MYISAM max_connections=10 ...

  4. scala高级内容(一) Case Class

    一. 操作符 自定义操作符 操作付默认左结合调用.除了以:结尾的操作符是右结合调用 object OperaterTest extends App{ val a: myInt = new myInt( ...

  5. c++ std::sort函数调用经常出现的invalidate operator<错误原因以及解决方法

    在c++编程中使用sort函数,自定义一个数据结构并进行排序时新手经常会碰到这种错误. 这是为什么呢?原因在于什么?如何解决? 看下面一个例子: int main(int, char*[]) { st ...

  6. Spark工程开发常用函数与方法(Scala语言)

    import org.apache.spark.{SparkContext, SparkConf}import org.apache.spark.sql.{SaveMode, DataFrame}im ...

  7. 关于java MulticastSocket中的joinGroup(SocketAddress mcastAddr,NetworkInterface netif)

    今天复习了一下java网络编程这方面(其实是之前没有学好),之前在linux下用c来做过一些例子,不过不好久没有用也就忘得一干二净了.不知道c/c++的东西不太好记,还是当初没好好学. 关于组播这方面 ...

  8. 转-- WebView使用实例(html5、文件下载和远程URL)

    在Android中有WebView Widget,它内置了WebKit引擎,同时,WebKit也是Mac OS X的Safari网页浏览器的基础.WebKit是一个开源的浏览器引擎,Chrome浏览器 ...

  9. c语言-枚举

    自定义枚举数据类型:一般在函数返回值调用过程中,被调用函数具体实现中可以直接return 枚举列表中的常量值而不用定义具体的枚举数据,调用方则需用枚举具体的数据变量来接收返回结果,而不能用#defin ...

  10. JS的Data类型格式化(转)

    // 对Date的扩展,将 Date 转化为指定格式的String // 月(M).日(d).小时(h).分(m).秒(s).季度(q) 可以用 1-2 个占位符, // 年(y)可以用 1-4 个占 ...