R语言决策树分类模型
rm(list=ls())
gc() memory.limit(4000)
library(corrplot)
library(rpart)
data_health<-read.csv("D:/smart_data0608/smart_data_section_good_15.txt",header=FALSE,sep="\t",na.strings="None")#读健康数据
data_fault<-read.csv("D:/smart_data0608/smart_data_section_failTrainSet_last24h.txt",header=FALSE,sep="\t",na.strings="None")#读故障数据-训练数据
data_fault_test<-read.csv("D:/smart_data0608/smart_data_section_failTestSet_last24h.txt",header=FALSE,sep="\t",na.strings="None")#读故障数据—测试数据 colnames(data_health) <- c("id","serial_number","update_time","smart_health_status","current_drive_temperature","drive_trip_temperature","elements_in_grown_defect_list","manufactured_time","cycle_count","load_unload_count","load_unload_count","load_unload_cycles","blocks_sent_to_initiator","blocks_received_from_initiator","blocks_read_from_cache","num_commands_size_not_larger_than_segment_size ","num_commands_size_larger_than_segment_size","num_hours_powered_up","num_minutes_next_test","read_corrected_ecc_fast","read_corrected_ecc_delayed","read_corrected_re","read_total_errors_corrected","read_correction_algo_invocations","read_gigabytes_processed","read_total_uncorrected_errors","write_corrected_ecc_fast","write_corrected_ecc_delayed","write_corrected_re","write_total_errors_corrected","write_correction_algo_invocations","write_gigabytes_processed","write_total_uncorrected_errors","verify_corrected_ecc_fast","verify_corrected_ecc_delayed","verify_corrected_re","verify_total_errors_corrected","verify_correction_algo_invocations","verify_gigabytes_processed","verify_total_uncorrected_errors","non_medium_error_count") #列改名 colnames(data_fault) <- c("id","serial_number","update_time","smart_health_status","current_drive_temperature","drive_trip_temperature","elements_in_grown_defect_list","manufactured_time","cycle_count","load_unload_count","load_unload_count","load_unload_cycles","blocks_sent_to_initiator","blocks_received_from_initiator","blocks_read_from_cache","num_commands_size_not_larger_than_segment_size ","num_commands_size_larger_than_segment_size","num_hours_powered_up","num_minutes_next_test","read_corrected_ecc_fast","read_corrected_ecc_delayed","read_corrected_re","read_total_errors_corrected","read_correction_algo_invocations","read_gigabytes_processed","read_total_uncorrected_errors","write_corrected_ecc_fast","write_corrected_ecc_delayed","write_corrected_re","write_total_errors_corrected","write_correction_algo_invocations","write_gigabytes_processed","write_total_uncorrected_errors","verify_corrected_ecc_fast","verify_corrected_ecc_delayed","verify_corrected_re","verify_total_errors_corrected","verify_correction_algo_invocations","verify_gigabytes_processed","verify_total_uncorrected_errors","non_medium_error_count") #列改名 colnames(data_fault_test) <- c("id","serial_number","update_time","smart_health_status","current_drive_temperature","drive_trip_temperature","elements_in_grown_defect_list","manufactured_time","cycle_count","load_unload_count","load_unload_count","load_unload_cycles","blocks_sent_to_initiator","blocks_received_from_initiator","blocks_read_from_cache","num_commands_size_not_larger_than_segment_size ","num_commands_size_larger_than_segment_size","num_hours_powered_up","num_minutes_next_test","read_corrected_ecc_fast","read_corrected_ecc_delayed","read_corrected_re","read_total_errors_corrected","read_correction_algo_invocations","read_gigabytes_processed","read_total_uncorrected_errors","write_corrected_ecc_fast","write_corrected_ecc_delayed","write_corrected_re","write_total_errors_corrected","write_correction_algo_invocations","write_gigabytes_processed","write_total_uncorrected_errors","verify_corrected_ecc_fast","verify_corrected_ecc_delayed","verify_corrected_re","verify_total_errors_corrected","verify_correction_algo_invocations","verify_gigabytes_processed","verify_total_uncorrected_errors","non_medium_error_count") #列改名 data_health$label <- 0
data_fault$label <- 1
data_fault_test$label <- 1 #决策树
n <- nrow(data_fault)
dataNewTraining<-rbind(data_fault,data_health[sample(1:(nrow(data_health[1:(nrow(data_health)*0.7),])),n*20),])
dataNewTest<-rbind(data_fault_test,data_health[-(1:(nrow(data_health)*0.7)),]) pdf(file='D:/smart_data0608/smartDT_last24h.pdf',family="GB1")
dt <- rpart(label~ current_drive_temperature + elements_in_grown_defect_list + read_corrected_ecc_fast + read_corrected_ecc_delayed + read_corrected_re + read_total_errors_corrected + read_correction_algo_invocations + read_gigabytes_processed + read_total_uncorrected_errors + write_corrected_ecc_fast + write_corrected_ecc_delayed + write_corrected_re + write_total_errors_corrected + write_correction_algo_invocations + write_gigabytes_processed + write_total_uncorrected_errors,data = dataNewTraining, method = "class")
plot(dt,main="smartDT");text(dt)
dev.off() rawPredictScore = predict(dt,dataNewTest)
predictScore <- data.frame(rawPredictScore)
predictScore$label <- 2
predictScore[predictScore$X0 > predictScore$X1,][,"label"]=0
predictScore[predictScore$X0 <= predictScore$X1,][,"label"]=1 write.table(data.frame(predictScore$label,dataNewTest$label,dataNewTest$update_time,dataNewTest$serial_number), file="D:/smart_data0608/smartTestSetWithSerNO_last24h.txt",row.names= F ,col.names= F ,sep="\t")
分类结果:
//smartTestSetWithSerNO_last24h
健康样本数/健康判为故障样本数:583670/978
健康磁盘数/健康判为故障磁盘数:4150/12
健康样本预测率为:0.9983243956345195
健康盘预测率为:0.9971084337349397
--------------------------------
故障样本数/故障判为故障样本数:170/169
故障磁盘数/故障判为故障磁盘数:11/11
故障样本预测率为:0.9941176470588236
故障盘预测率为:1.0
R语言决策树分类模型的更多相关文章
- R语言︱LDA主题模型——最优主题...
R语言︱LDA主题模型——最优主题...:https://blog.csdn.net/sinat_26917383/article/details/51547298#comments
- 基于R语言的ARIMA模型
A IMA模型是一种著名的时间序列预测方法,主要是指将非平稳时间序列转化为平稳时间序列,然后将因变量仅对它的滞后值以及随机误差项的现值和滞后值进行回归所建立的模型.ARIMA模型根据原序列是否平稳以及 ...
- R语言︱决策树族——随机森林算法
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:有一篇<有监督学习选择深度学习 ...
- R语言与分类算法的绩效评估(转)
关于分类算法我们之前也讨论过了KNN.决策树.naivebayes.SVM.ANN.logistic回归.关于这么多的分类算法,我们自然需要考虑谁的表现更加的优秀. 既然要对分类算法进行评价,那么我们 ...
- R语言︱LDA主题模型——最优主题数选取(topicmodels)+LDAvis可视化(lda+LDAvis)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:在自己学LDA主题模型时候,发现该模 ...
- Spark 决策树--分类模型
package Spark_MLlib import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.{D ...
- R语言的ARIMA模型预测
R通过RODBC连接数据库 stats包中的st函数建立时间序列 funitRoot包中的unitrootTest函数检验单位根 forecast包中的函数进行预测 差分用timeSeries包中di ...
- Redhat 5.8系统安装R语言作Arima模型预测
请见Github博客:http://wuxichen.github.io/Myblog/timeseries/2014/09/02/RJavaonLinux.html
- 不知道怎么改的尴尬R语言的ARIMA模型预测
数据还有很多没弄好,程序还没弄完全好. > read.xlsx("H:/ProjectPaper/论文/1.xlsx","Sheet1") > it ...
随机推荐
- 使用BTRACE定位系统中慢的问题
在访问页面请求的时候,如果系统执行效率低,我们怎样才能定位到这些页面请求呢? java 有一个十分有效的动态跟踪工具-btrace 网址:https://kenai.com/projects/bt ...
- Swift - 自动布局库SnapKit的使用详解2(约束的更新、移除、重做)
在之前的文章中我介绍了如何使用SnapKit的 snp_makeConstraints 方法进行各种约束的设置.但有时我们的页面并不是一直固定不变的,这就需要修改已经存在的约束.本文介绍如何更新.移除 ...
- Android调用远程Service的参数和返回值都需要实现Parcelable接口
import android.os.Parcel;import android.os.Parcelable; public class Person implements Parcelable{ pr ...
- 四种java代码静态检查工具
[转载]常用 Java 静态代码分析工具的分析与比较 转载自 开源中国社区 http://www.oschina.net/question/129540_23043 1月16日厦门 OSC ...
- 数组越界保护与消息传递black机制
数组越界保护if(index.row <= [array count]) 发送消息[[NSNotificationCenter defaultCenter] postNotificati ...
- bzoj 2037: [Sdoi2008]Sue的小球
#include<cstdio> #include<iostream> #include<algorithm> using namespace std; struc ...
- POJ 3274 Gold Balanced Lineup 哈希,查重 难度:3
Farmer John's N cows (1 ≤ N ≤ 100,000) share many similarities. In fact, FJ has been able to narrow ...
- Ubuntu: an error occurred while mounting /mnt/hgfs
对于这个error,我采用的一个不完美的方法是: vi /etc/fstab .host:/projectname /mnt/hgfs vmhgfs rw,ttl=,uid=my_uid,gid=my ...
- JDBC 1
Java 中的数据存储技术 在Java中,数据库存取技术可分为如下几类: JDBC直接访问数据库 JDO技术 第三方O/R工具,如Hibernate, ibatis 等 JDBC是java访问数据库的 ...
- The authenticity of host 192.168.0.xxx can't be established.
用ssh登录一个机器(换过ip地址),提示输入yes后,屏幕不断出现y,只有按ctrl + c结束 错误是:The authenticity of host 192.168.0.xxx can't b ...