R语言决策树分类模型
rm(list=ls())
gc() memory.limit(4000)
library(corrplot)
library(rpart)
data_health<-read.csv("D:/smart_data0608/smart_data_section_good_15.txt",header=FALSE,sep="\t",na.strings="None")#读健康数据
data_fault<-read.csv("D:/smart_data0608/smart_data_section_failTrainSet_last24h.txt",header=FALSE,sep="\t",na.strings="None")#读故障数据-训练数据
data_fault_test<-read.csv("D:/smart_data0608/smart_data_section_failTestSet_last24h.txt",header=FALSE,sep="\t",na.strings="None")#读故障数据—测试数据 colnames(data_health) <- c("id","serial_number","update_time","smart_health_status","current_drive_temperature","drive_trip_temperature","elements_in_grown_defect_list","manufactured_time","cycle_count","load_unload_count","load_unload_count","load_unload_cycles","blocks_sent_to_initiator","blocks_received_from_initiator","blocks_read_from_cache","num_commands_size_not_larger_than_segment_size ","num_commands_size_larger_than_segment_size","num_hours_powered_up","num_minutes_next_test","read_corrected_ecc_fast","read_corrected_ecc_delayed","read_corrected_re","read_total_errors_corrected","read_correction_algo_invocations","read_gigabytes_processed","read_total_uncorrected_errors","write_corrected_ecc_fast","write_corrected_ecc_delayed","write_corrected_re","write_total_errors_corrected","write_correction_algo_invocations","write_gigabytes_processed","write_total_uncorrected_errors","verify_corrected_ecc_fast","verify_corrected_ecc_delayed","verify_corrected_re","verify_total_errors_corrected","verify_correction_algo_invocations","verify_gigabytes_processed","verify_total_uncorrected_errors","non_medium_error_count") #列改名 colnames(data_fault) <- c("id","serial_number","update_time","smart_health_status","current_drive_temperature","drive_trip_temperature","elements_in_grown_defect_list","manufactured_time","cycle_count","load_unload_count","load_unload_count","load_unload_cycles","blocks_sent_to_initiator","blocks_received_from_initiator","blocks_read_from_cache","num_commands_size_not_larger_than_segment_size ","num_commands_size_larger_than_segment_size","num_hours_powered_up","num_minutes_next_test","read_corrected_ecc_fast","read_corrected_ecc_delayed","read_corrected_re","read_total_errors_corrected","read_correction_algo_invocations","read_gigabytes_processed","read_total_uncorrected_errors","write_corrected_ecc_fast","write_corrected_ecc_delayed","write_corrected_re","write_total_errors_corrected","write_correction_algo_invocations","write_gigabytes_processed","write_total_uncorrected_errors","verify_corrected_ecc_fast","verify_corrected_ecc_delayed","verify_corrected_re","verify_total_errors_corrected","verify_correction_algo_invocations","verify_gigabytes_processed","verify_total_uncorrected_errors","non_medium_error_count") #列改名 colnames(data_fault_test) <- c("id","serial_number","update_time","smart_health_status","current_drive_temperature","drive_trip_temperature","elements_in_grown_defect_list","manufactured_time","cycle_count","load_unload_count","load_unload_count","load_unload_cycles","blocks_sent_to_initiator","blocks_received_from_initiator","blocks_read_from_cache","num_commands_size_not_larger_than_segment_size ","num_commands_size_larger_than_segment_size","num_hours_powered_up","num_minutes_next_test","read_corrected_ecc_fast","read_corrected_ecc_delayed","read_corrected_re","read_total_errors_corrected","read_correction_algo_invocations","read_gigabytes_processed","read_total_uncorrected_errors","write_corrected_ecc_fast","write_corrected_ecc_delayed","write_corrected_re","write_total_errors_corrected","write_correction_algo_invocations","write_gigabytes_processed","write_total_uncorrected_errors","verify_corrected_ecc_fast","verify_corrected_ecc_delayed","verify_corrected_re","verify_total_errors_corrected","verify_correction_algo_invocations","verify_gigabytes_processed","verify_total_uncorrected_errors","non_medium_error_count") #列改名 data_health$label <- 0
data_fault$label <- 1
data_fault_test$label <- 1 #决策树
n <- nrow(data_fault)
dataNewTraining<-rbind(data_fault,data_health[sample(1:(nrow(data_health[1:(nrow(data_health)*0.7),])),n*20),])
dataNewTest<-rbind(data_fault_test,data_health[-(1:(nrow(data_health)*0.7)),]) pdf(file='D:/smart_data0608/smartDT_last24h.pdf',family="GB1")
dt <- rpart(label~ current_drive_temperature + elements_in_grown_defect_list + read_corrected_ecc_fast + read_corrected_ecc_delayed + read_corrected_re + read_total_errors_corrected + read_correction_algo_invocations + read_gigabytes_processed + read_total_uncorrected_errors + write_corrected_ecc_fast + write_corrected_ecc_delayed + write_corrected_re + write_total_errors_corrected + write_correction_algo_invocations + write_gigabytes_processed + write_total_uncorrected_errors,data = dataNewTraining, method = "class")
plot(dt,main="smartDT");text(dt)
dev.off() rawPredictScore = predict(dt,dataNewTest)
predictScore <- data.frame(rawPredictScore)
predictScore$label <- 2
predictScore[predictScore$X0 > predictScore$X1,][,"label"]=0
predictScore[predictScore$X0 <= predictScore$X1,][,"label"]=1 write.table(data.frame(predictScore$label,dataNewTest$label,dataNewTest$update_time,dataNewTest$serial_number), file="D:/smart_data0608/smartTestSetWithSerNO_last24h.txt",row.names= F ,col.names= F ,sep="\t")
分类结果:
//smartTestSetWithSerNO_last24h
健康样本数/健康判为故障样本数:583670/978
健康磁盘数/健康判为故障磁盘数:4150/12
健康样本预测率为:0.9983243956345195
健康盘预测率为:0.9971084337349397
--------------------------------
故障样本数/故障判为故障样本数:170/169
故障磁盘数/故障判为故障磁盘数:11/11
故障样本预测率为:0.9941176470588236
故障盘预测率为:1.0
R语言决策树分类模型的更多相关文章
- R语言︱LDA主题模型——最优主题...
R语言︱LDA主题模型——最优主题...:https://blog.csdn.net/sinat_26917383/article/details/51547298#comments
- 基于R语言的ARIMA模型
A IMA模型是一种著名的时间序列预测方法,主要是指将非平稳时间序列转化为平稳时间序列,然后将因变量仅对它的滞后值以及随机误差项的现值和滞后值进行回归所建立的模型.ARIMA模型根据原序列是否平稳以及 ...
- R语言︱决策树族——随机森林算法
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:有一篇<有监督学习选择深度学习 ...
- R语言与分类算法的绩效评估(转)
关于分类算法我们之前也讨论过了KNN.决策树.naivebayes.SVM.ANN.logistic回归.关于这么多的分类算法,我们自然需要考虑谁的表现更加的优秀. 既然要对分类算法进行评价,那么我们 ...
- R语言︱LDA主题模型——最优主题数选取(topicmodels)+LDAvis可视化(lda+LDAvis)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:在自己学LDA主题模型时候,发现该模 ...
- Spark 决策树--分类模型
package Spark_MLlib import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.{D ...
- R语言的ARIMA模型预测
R通过RODBC连接数据库 stats包中的st函数建立时间序列 funitRoot包中的unitrootTest函数检验单位根 forecast包中的函数进行预测 差分用timeSeries包中di ...
- Redhat 5.8系统安装R语言作Arima模型预测
请见Github博客:http://wuxichen.github.io/Myblog/timeseries/2014/09/02/RJavaonLinux.html
- 不知道怎么改的尴尬R语言的ARIMA模型预测
数据还有很多没弄好,程序还没弄完全好. > read.xlsx("H:/ProjectPaper/论文/1.xlsx","Sheet1") > it ...
随机推荐
- 【模板下载】innosetup 制作.net安装包的模板
NetworkComms网络通信框架序言 这个模板是在博客园和CodeProject上的代码修改而成的,感谢原作者 模板是2个 innosetup 制作.net 2.0 安装包的模板 innosetu ...
- linux 下echo命令写入文件内容
http://blog.csdn.net/xukai871105/article/details/35834703 echo "Raspberry" > test.txt
- Ubuntu 13.10 Broadcom BCM4313问题
开始找不到无线网卡,后来不知道怎么就出来了,但是速度很慢.用下面的方法解决的(我也不知道哪条命令起的作用,反正现在正常了): sudo apt-get remove --purge bcmwl-ker ...
- NGINX Plus 现在完全支持 HTTP/2
早些时候,我们发布了支持 HTTP/2 协议的 NGINX Plus R7.作为 HTTP 协议的最新标准,HTTP/2 的设计为现在的 web 应用程序带来了更高的性能和安全性.(LCTT 译注: ...
- 各种主流数据库的比较(所以说我觉得Oracle这个keng?入的不错?)
随着计算机技术不断发展,各种数据库编程工具也随着发展,使当今的大多数程序开发人员可以摆脱枯燥无味的用计算机指令或汇编语言开发软件,而是利用一系列高效的.具有良好可视化的编程工具去开发各种数据库软件,从 ...
- dancing link模板
#include<cstdio> #include<iostream> #include<cstring> #include<algorithm> #i ...
- Ajax入门
实例如下: <html> <head> <script type="text/javascript"> function loadXMLDoc( ...
- ubnutu安装sougou 输入法
先安百度经验安装fcitx 1.首先下载sogoupinyin_2.0.0.0068_amd64.deb,点击安装后,会通过ubuntu软件中心安装,安装玩成后,任然是无法使用.然后: 2.然后执行下 ...
- 戴文的Linux内核专题:04安全
转自Linux中国 Linux内核是所有Linux系统的核心.如果有任何恶意代码控制或破害了内核的任何一部分,那么系统会严重受损,文件可能被删除或损坏,私人信息可能被盗等等.很明显,保持内核安全涉及到 ...
- Unity游戏数据用Json保存
(一)关于路径 unity有几个关键的路径 (1).Application.dataPath 只读路径,就是工作目录的Assets路径 (2).Application.streamingAssetsP ...