rm(list=ls())
gc() memory.limit(4000)
library(corrplot)
library(rpart)
data_health<-read.csv("D:/smart_data0608/smart_data_section_good_15.txt",header=FALSE,sep="\t",na.strings="None")#读健康数据
data_fault<-read.csv("D:/smart_data0608/smart_data_section_failTrainSet_last24h.txt",header=FALSE,sep="\t",na.strings="None")#读故障数据-训练数据
data_fault_test<-read.csv("D:/smart_data0608/smart_data_section_failTestSet_last24h.txt",header=FALSE,sep="\t",na.strings="None")#读故障数据—测试数据 colnames(data_health) <- c("id","serial_number","update_time","smart_health_status","current_drive_temperature","drive_trip_temperature","elements_in_grown_defect_list","manufactured_time","cycle_count","load_unload_count","load_unload_count","load_unload_cycles","blocks_sent_to_initiator","blocks_received_from_initiator","blocks_read_from_cache","num_commands_size_not_larger_than_segment_size ","num_commands_size_larger_than_segment_size","num_hours_powered_up","num_minutes_next_test","read_corrected_ecc_fast","read_corrected_ecc_delayed","read_corrected_re","read_total_errors_corrected","read_correction_algo_invocations","read_gigabytes_processed","read_total_uncorrected_errors","write_corrected_ecc_fast","write_corrected_ecc_delayed","write_corrected_re","write_total_errors_corrected","write_correction_algo_invocations","write_gigabytes_processed","write_total_uncorrected_errors","verify_corrected_ecc_fast","verify_corrected_ecc_delayed","verify_corrected_re","verify_total_errors_corrected","verify_correction_algo_invocations","verify_gigabytes_processed","verify_total_uncorrected_errors","non_medium_error_count") #列改名 colnames(data_fault) <- c("id","serial_number","update_time","smart_health_status","current_drive_temperature","drive_trip_temperature","elements_in_grown_defect_list","manufactured_time","cycle_count","load_unload_count","load_unload_count","load_unload_cycles","blocks_sent_to_initiator","blocks_received_from_initiator","blocks_read_from_cache","num_commands_size_not_larger_than_segment_size ","num_commands_size_larger_than_segment_size","num_hours_powered_up","num_minutes_next_test","read_corrected_ecc_fast","read_corrected_ecc_delayed","read_corrected_re","read_total_errors_corrected","read_correction_algo_invocations","read_gigabytes_processed","read_total_uncorrected_errors","write_corrected_ecc_fast","write_corrected_ecc_delayed","write_corrected_re","write_total_errors_corrected","write_correction_algo_invocations","write_gigabytes_processed","write_total_uncorrected_errors","verify_corrected_ecc_fast","verify_corrected_ecc_delayed","verify_corrected_re","verify_total_errors_corrected","verify_correction_algo_invocations","verify_gigabytes_processed","verify_total_uncorrected_errors","non_medium_error_count") #列改名 colnames(data_fault_test) <- c("id","serial_number","update_time","smart_health_status","current_drive_temperature","drive_trip_temperature","elements_in_grown_defect_list","manufactured_time","cycle_count","load_unload_count","load_unload_count","load_unload_cycles","blocks_sent_to_initiator","blocks_received_from_initiator","blocks_read_from_cache","num_commands_size_not_larger_than_segment_size ","num_commands_size_larger_than_segment_size","num_hours_powered_up","num_minutes_next_test","read_corrected_ecc_fast","read_corrected_ecc_delayed","read_corrected_re","read_total_errors_corrected","read_correction_algo_invocations","read_gigabytes_processed","read_total_uncorrected_errors","write_corrected_ecc_fast","write_corrected_ecc_delayed","write_corrected_re","write_total_errors_corrected","write_correction_algo_invocations","write_gigabytes_processed","write_total_uncorrected_errors","verify_corrected_ecc_fast","verify_corrected_ecc_delayed","verify_corrected_re","verify_total_errors_corrected","verify_correction_algo_invocations","verify_gigabytes_processed","verify_total_uncorrected_errors","non_medium_error_count") #列改名 data_health$label <- 0
data_fault$label <- 1
data_fault_test$label <- 1 #决策树
n <- nrow(data_fault)
dataNewTraining<-rbind(data_fault,data_health[sample(1:(nrow(data_health[1:(nrow(data_health)*0.7),])),n*20),])
dataNewTest<-rbind(data_fault_test,data_health[-(1:(nrow(data_health)*0.7)),]) pdf(file='D:/smart_data0608/smartDT_last24h.pdf',family="GB1")
dt <- rpart(label~ current_drive_temperature + elements_in_grown_defect_list + read_corrected_ecc_fast + read_corrected_ecc_delayed + read_corrected_re + read_total_errors_corrected + read_correction_algo_invocations + read_gigabytes_processed + read_total_uncorrected_errors + write_corrected_ecc_fast + write_corrected_ecc_delayed + write_corrected_re + write_total_errors_corrected + write_correction_algo_invocations + write_gigabytes_processed + write_total_uncorrected_errors,data = dataNewTraining, method = "class")
plot(dt,main="smartDT");text(dt)
dev.off() rawPredictScore = predict(dt,dataNewTest)
predictScore <- data.frame(rawPredictScore)
predictScore$label <- 2
predictScore[predictScore$X0 > predictScore$X1,][,"label"]=0
predictScore[predictScore$X0 <= predictScore$X1,][,"label"]=1 write.table(data.frame(predictScore$label,dataNewTest$label,dataNewTest$update_time,dataNewTest$serial_number), file="D:/smart_data0608/smartTestSetWithSerNO_last24h.txt",row.names= F ,col.names= F ,sep="\t")

  

分类结果:

//smartTestSetWithSerNO_last24h
健康样本数/健康判为故障样本数:583670/978
健康磁盘数/健康判为故障磁盘数:4150/12
健康样本预测率为:0.9983243956345195
健康盘预测率为:0.9971084337349397
--------------------------------
故障样本数/故障判为故障样本数:170/169
故障磁盘数/故障判为故障磁盘数:11/11
故障样本预测率为:0.9941176470588236
故障盘预测率为:1.0

R语言决策树分类模型的更多相关文章

  1. R语言︱LDA主题模型——最优主题...

    R语言︱LDA主题模型——最优主题...:https://blog.csdn.net/sinat_26917383/article/details/51547298#comments

  2. 基于R语言的ARIMA模型

    A IMA模型是一种著名的时间序列预测方法,主要是指将非平稳时间序列转化为平稳时间序列,然后将因变量仅对它的滞后值以及随机误差项的现值和滞后值进行回归所建立的模型.ARIMA模型根据原序列是否平稳以及 ...

  3. R语言︱决策树族——随机森林算法

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:有一篇<有监督学习选择深度学习 ...

  4. R语言与分类算法的绩效评估(转)

    关于分类算法我们之前也讨论过了KNN.决策树.naivebayes.SVM.ANN.logistic回归.关于这么多的分类算法,我们自然需要考虑谁的表现更加的优秀. 既然要对分类算法进行评价,那么我们 ...

  5. R语言︱LDA主题模型——最优主题数选取(topicmodels)+LDAvis可视化(lda+LDAvis)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:在自己学LDA主题模型时候,发现该模 ...

  6. Spark 决策树--分类模型

    package Spark_MLlib import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.{D ...

  7. R语言的ARIMA模型预测

    R通过RODBC连接数据库 stats包中的st函数建立时间序列 funitRoot包中的unitrootTest函数检验单位根 forecast包中的函数进行预测 差分用timeSeries包中di ...

  8. Redhat 5.8系统安装R语言作Arima模型预测

    请见Github博客:http://wuxichen.github.io/Myblog/timeseries/2014/09/02/RJavaonLinux.html

  9. 不知道怎么改的尴尬R语言的ARIMA模型预测

    数据还有很多没弄好,程序还没弄完全好. > read.xlsx("H:/ProjectPaper/论文/1.xlsx","Sheet1") > it ...

随机推荐

  1. BZOJ3888 [Usaco2015 Jan]Stampede

    我们只要把每头牛开始遮挡视线和结束遮挡视线的时间点都搞出来就好= = 再按照y轴排序...然后变成线段覆盖了..线段树搞一下就好了? /******************************** ...

  2. ACTIVITI 表结构数据分析

    ACTIVITI ACT_RU_EXECUTION 表     这个表是工作流程的核心表,流程的驱动都和合格表有密切的关系. 一般来讲一个流程实例都有一条主线.如果流程为直线流程,那么流程实例在这个表 ...

  3. HDU 4405 Aeroplane chess 概率DP 难度:0

    http://acm.hdu.edu.cn/showproblem.php?pid=4405 明显,有飞机的时候不需要考虑骰子,一定是乘飞机更优 设E[i]为分数为i时还需要走的步数期望,j为某个可能 ...

  4. LA 5059 - Playing With Stones

    博弈 SG  由于每个a太大,没有办法递推,但是可以找规律 a为偶数  SG(a)=a/2 a为奇数  SG(a)=SG(a/2) 代码: #include <iostream> #inc ...

  5. 解决:操作无法完成(错误0x00000709)。再次检查打印机名称,并确保打印机已连接到.

    就是重启一下服务器端的Print Spooler服务就行了,这么简单! [控制面板 -  服务 -  Print Spooler]

  6. 解决使用OCI连接oracle LNK2019: 无法解析的外部符号的问题

    据我所知,在使用OCI连接Oracle时出现LNK2019: 无法解析的外部符号问题的情况有两种: 一.没有引入附加依赖项,右键项目->属性->配置属性->链接器->输入中添加 ...

  7. JS图片加载失败显示默认图片

    代码如下: <div id='photo<%# Container.DataItemIndex+1%>' style="position: absolute; displa ...

  8. IE和火狐 差异

    1.JavaScript中 1)IE和FireFox中childNodes的差别: <head> <script type="text/javascript"&g ...

  9. greenDao 3.0基础

    引入greenDao3.0 首先在project的gradle文件中引入greenDAO插件 dependencies {       classpath 'com.android.tools.bui ...

  10. 记录一些容易忘记的属性 -- NSTimer

    使定时器停止的方法: 1. //将定时器的启动时间设置为很久以后的将来,到这个时间,定时器才会开始工作            [_timer setFireDate:[NSDate distantFu ...