Network of Schools
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 16343   Accepted: 6484

Description

A number of schools are connected to a computer network. Agreements have been developed among those schools: each school maintains a list of schools to which it distributes software (the “receiving schools”). Note that if B is in the distribution list of school A, then A does not necessarily appear in the list of school B
You are to write a program that computes the minimal number of
schools that must receive a copy of the new software in order for the
software to reach all schools in the network according to the agreement
(Subtask A). As a further task, we want to ensure that by sending the
copy of new software to an arbitrary school, this software will reach
all schools in the network. To achieve this goal we may have to extend
the lists of receivers by new members. Compute the minimal number of
extensions that have to be made so that whatever school we send the new
software to, it will reach all other schools (Subtask B). One extension
means introducing one new member into the list of receivers of one
school.

Input

The
first line contains an integer N: the number of schools in the network
(2 <= N <= 100). The schools are identified by the first N
positive integers. Each of the next N lines describes a list of
receivers. The line i+1 contains the identifiers of the receivers of
school i. Each list ends with a 0. An empty list contains a 0 alone in
the line.

Output

Your
program should write two lines to the standard output. The first line
should contain one positive integer: the solution of subtask A. The
second line should contain the solution of subtask B.

Sample Input

5
2 4 3 0
4 5 0
0
0
1 0

Sample Output

1
2
【分析】第一问就是问最少有多少个连通块,可以用Tarjan缩点,然后看入度为0的连通分量有多少个就行了。
第二问就是问最少添加几条边使得这个无向图变成一个连通块,缩点后,令father为树根数,令son为子叶数,则答案为max(father,son),若缩点后就一个点,则输出1 0。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <time.h>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#define inf 0x3f3f3f3f
#define mod 10000
typedef long long ll;
using namespace std;
const int N=105;
const int M=10005;
int s,t,n,m,cnt,tim,top,cut;
int head[N],dfn[N],low[N],stack1[N];
int num[N],in[N],out[N],vis[N];
bool flag=false;
struct man
{
    int to,nxt;
}edg[M];
void addedg(int u,int v)
{
    edg[cnt].to=v;edg[cnt].nxt=head[u];head[u]=cnt++;
}
void init()
{
    cnt=0;tim=1;top=cut=0;
    memset(head,-1,sizeof head);
    memset(dfn,0,sizeof dfn);
    memset(low,0,sizeof low);
    memset(stack1,0,sizeof stack1);
    memset(num,0,sizeof num);
    memset(in,0,sizeof in);
    memset(out,0,sizeof out);
    memset(vis,0,sizeof vis);
    memset(edg,0,sizeof edg);
}
void dfs(int u) {
    int v;
    low[u] = dfn[u] = ++tim;
    stack1[top++] = u;
    vis[u] = 1;
    for(int e = head[u]; e != -1; e = edg[e].nxt)
    {
        v = edg[e].to;
        if(!dfn[v])
        {
            dfs(v);
            low[u] = min(low[u], low[v]);
        }
        else if(vis[v])
        {
            low[u] = min(low[u], dfn[v]);
        }
    }
    if(low[u] == dfn[u])
    {
        cut++;//printf("!!!%d\n",u);
        do
        {
            v = stack1[--top];
            num[v] = cut;
            vis[v] = 0;
        }while(u != v);
    }
}
int main() {
    while(~scanf("%d",&n)){
    init();
    for(int i=1;i<=n;i++){
        while(1){
            scanf("%d",&m);
            if(!m)break;
            addedg(i,m);
        }
    }
    for(int i=1;i<=n;i++)if(!dfn[i])dfs(i);
    for(int i=1;i<=n;i++){
        for(int j=head[i];j!=-1;j=edg[j].nxt){
            int v=edg[j].to;//printf("%d %d %d %d\n",i,num[i],v,num[v]);
            if(num[i]!=num[v])out[num[i]]++,in[num[v]]++;
        }
    }
    int father=0,son=0;
    for(int i=1;i<=cut;i++){
        if(in[i]==0)father++;
        if(out[i]==0)son++;
    }
    if(cut==1)printf("1\n0\n");
    else printf("%d\n%d\n",father,max(father,son));
    }
    return 0;
}

POJ1236 Network of Schools (强连通)(缩点)的更多相关文章

  1. POJ1236 Network of Schools —— 强连通分量 + 缩点 + 入出度

    题目链接:http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Tot ...

  2. poj-1236.network of schools(强连通分量 + 图的入度出度)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 27121   Accepted: 10 ...

  3. POJ1236 Network of Schools (强连通分量,注意边界)

    A number of schools are connected to a computer network. Agreements have been developed among those ...

  4. [poj1236]Network of Schools(targin缩点SCC)

    题意:有N个学校,从每个学校都能从一个单向网络到另外一个学校.1:初始至少需要向多少个学校发放软件,使得网络内所有的学校最终都能得到软件.2:至少需要添加几条边,使任意向一个学校发放软件后,经过若干次 ...

  5. poj1236 Network of Schools(SCC缩点+结论推导)

    第一问简单不讲. 第二问简化后问题是给一张DAG求最少添加几条边使得DAG变成一个SCC.首先所有中间点(有入度有出度)肯定直接顺着走到无出度点,所以肯定是无出度点连向无入度点. 把无入度点作为点集S ...

  6. P2746 [USACO5.3]校园网Network of Schools// POJ1236: Network of Schools

    P2746 [USACO5.3]校园网Network of Schools// POJ1236: Network of Schools 题目描述 一些学校连入一个电脑网络.那些学校已订立了协议:每个学 ...

  7. POJ 1236 Network Of Schools (强连通分量缩点求出度为0的和入度为0的分量个数)

    Network of Schools A number of schools are connected to a computer network. Agreements have been dev ...

  8. Network of Schools(强连通分量+缩点) (问添加几个点最少点是所有点连接+添加最少边使图强连通)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 13801   Accepted: 55 ...

  9. POJ 1236 Network of Schools Tarjan缩点

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 22729   Accepted: 89 ...

随机推荐

  1. 11个Linux基础面试问题

    Q.1: Linux 操作系统的核心是什么? Shell Kernel Command Script Terminal 答: 内核(Kernel)是Linux 操作系统的核心.Shell是一个命令行解 ...

  2. 'NSInteger' (aka 'long') to 'int32

    怎么去掉Xcode工程中的某种类型的警告 Implicit conversion loses integer precision: 'NSInteger' (aka 'long') to 'int32 ...

  3. Android布局— — —表格布局

    表格布局 以表格的形式来显示界面中的控件,表格的每一行为一个TableRow,每当一个控件添加到TableRow中,就生成一个单元格. 语法格式: <TableLayout xmlns:andr ...

  4. passivedns 安装指南

    install passivedns on ubuntu Passive DNS对安全研究非常重要,因为它可以在前期帮助我们构建出目标的基础设施结构,并且可以得到以下三方面的答案:该域名曾经绑定过哪些 ...

  5. Android 对 properties文件的读写操作

    -. 放在res中的properties文件的读取,例如对放在assets目录中的setting.properties的读取:PS:之所以这里只是有读取操作,而没有写的操作,是因为我发现不能对res下 ...

  6. 2016-1-3点菜系统demo的实现,pickerView的学习

    // // ViewController.m // pickView // // Created by Mac on 16/1/3. // Copyright © 2016年 Mac. All rig ...

  7. In p = new Fred(), does the Fred memory “leak” if the Fred constructor throws an exception?

    No. If an exception occurs during the Fred constructor of p = new Fred(), the C++ language guarantee ...

  8. JS判断移动设备最佳方法 并实现跳转至手机版网页

    我在开发的Magento或Wordpress主题时,通过都会制作手机版本,为了实现某个片段在手机端和桌面端不同功能,又或者如果是手机设备,就跳转到指定的网页上,那么这里就需要用到JS来做判断了,下面有 ...

  9. # 20145210 《Java程序设计》第05周学习总结

    教材学习内容总结 第八章 异常处理 8.1语法与继承架构 •使用 try.catch •Java中所有信息都会被打包为对象,如果愿意,可以尝试(try)捕捉(catch)代表错误的对象后做一些处理 • ...

  10. jQuery ajax传多个参数

    ajax可以传送一个或多个参数到后台php中 <script> $(function(){ $("#sub_btn").click(function(){ var em ...