真是一道好题喵~

果然自动机什么的就是要和 dp 搞基才是王道有木有!

A:连 CTSC 都叫我们搞基,果然身为一个程序猿,加入 FFF 团是我此生最明智的选择。妹子什么闪边去,大家一起来搞基吧!

Q:教练你是什么时候产生了 dp 和自动机是同性的错觉~ 教练你又是什么时候产生了你还有个不入团的选择 ( 妹 子 )这样的错觉~

A:显而易见的,我们……

Q:教练不要转移话题啊!

A:显而易见的,我们先搞一个后缀自动机……

Q:等等,教练,多串的自动机要怎么写?

A:把几个串并在一起不就好了?

Q:不对啊,那查询的时候万一查到两个串相连的地方,不是悲剧了?

A:你傻啊!搞个分割符什么的不就解决了?!

Q:教练我的分割符是用 $ 还是用 # 呢?

(旁白:当然是 $ 了,$ 可是美金的意思,# 算什么,电话号码吗?)

A:。。。。。。

搞出了后缀自动机,就像我们经常做的一样,把每个节点能匹配的最长长度搞出来    (Q:我没文化你也不能这么逗我!)

把字串 S 在第 i 位能匹配到的最长长度 same[i] 搞出来

考虑二分答案L

就有了个显而易见的 dp 转移方程:

f[i]=max{f[j]-j+i | i-same[i]<=j<=i-L}

然后题目就被妥妥的解决了

Q:不对啊教练,这 dp 是 O(n2) 的!

f[i]=max{f[j]-j+i | i-same[i]<=j<=i-L}  ↔  f[i]-i=max{f[j]-j | i-same[i]<=j<=i-L}

A:这显然是单调的,优化优化就 O(n) 了

Q:教练求证明……

A:这个显然嘛,显然……要不然这题还怎么做额?

Q:教练……

A:烦死了,你打个表不就行了!

 #include <cstdio>
#include <cstring>
#include <cmath>
const int sizeOfType=;
const int sizeOfString=;
const int sizeOfMemory=; inline void getstring(char * s)
{
register char ch;
register int top=;
do ch=getchar(); while (ch<'' || ch>'');
do s[top++]=ch, ch=getchar(); while (ch>='' && ch<='');
s[top]='\0';
} struct deque
{
int l, r;
int q[sizeOfString];
inline deque():l(), r(-) {}
inline void clear() {l=, r=-;}
inline bool empty() {return l>r;}
inline int front() {return q[l];}
inline int back() {return q[r];}
inline void push(int x) {q[++r]=x;}
inline void pop_front() {++l;}
inline void pop_back() {r--;}
}; int N, M;
int len;
int same[sizeOfString];
char str[sizeOfString];
deque q;
int f[sizeOfString], g[sizeOfString];
inline int max(int x, int y) {return x>y?x:y;}
inline void dp(int); namespace suffixAutomaton
{
struct node
{
int step;
node * fail;
node * ch[sizeOfType];
};
node memory[sizeOfMemory], * port=memory;
node * dfa, * last;
inline node * newnode(node * t=NULL)
{
node * newt=port++;
newt->step=;
if (t) newt->fail=t->fail, t->fail=newt, memcpy(newt->ch, t->ch, sizeof t->ch);
else newt->fail=NULL, memset(newt->ch, , sizeof newt->ch);
return newt;
}
inline void clear() {port=memory; dfa=newnode(); dfa->fail=dfa; last=dfa;} inline int ord(char ch) {return ch>=''?ch-'':;}
inline void insert(int w)
{
node * p=last, * newp=newnode();
newp->step=p->step+; for ( ;p->ch[w]==NULL;p=p->fail) p->ch[w]=newp;
if (p->ch[w]==newp)
newp->fail=dfa;
else
{
node * q=p->ch[w];
if (q->step==p->step+)
newp->fail=q;
else
{
node * newq=newnode(q);
newq->step=p->step+;
newp->fail=newq;
for ( ;p->ch[w]==q;p=p->fail) p->ch[w]=newq;
}
} last=newp;
}
inline void buildDfa()
{
static char s[sizeOfString];
int len; clear();
for (int i=;i<M;i++)
{
getstring(s); len=strlen(s);
for (int j=;j<len;j++)
insert(ord(s[j]));
insert(ord('$'));
}
}
inline void search(char * s)
{
int tot=;
node * t=dfa; for (int i=;i<=len;i++)
{
int w=ord(s[i-]);
if (t->ch[w])
{
t=t->ch[w];
++tot;
}
else
{
node * j;
for (j=t->fail;j!=dfa && !j->ch[w];j=j->fail);
if (j->ch[w])
{
t=j->ch[w];
tot=j->step+;
}
else
{
t=dfa;
tot=;
}
}
same[i]=tot;
}
}
} int main()
{
scanf("%d %d", &N, &M);
suffixAutomaton::buildDfa();
for (int i=;i<=N;i++)
{
getstring(str);
len=strlen(str);
suffixAutomaton::search(str); int L=, R=len+;
while (L+<R)
{
int M=(L+R)>>;
dp(M);
if (*f[len]>=*len) L=M;
else R=M;
} printf("%d\n", L);
} return ;
}
inline void dp(int L)
{
q.clear(); for (int i=;i<=len;i++)
{
int j=i-L;
if (j>=)
{
for ( ;!q.empty() && g[j]>g[q.back()];q.pop_back());
q.push(j);
}
f[i]=f[i-];
for ( ;!q.empty() && q.front()<i-same[i];q.pop_front());
if (!q.empty())
f[i]=max(f[i], g[q.front()]+i);
g[i]=f[i]-i;
}
}

本傻乱搞系列

后记:

话说我根本不知道如何证明单调性,但是大家注意到这是类似于一个一直在往右移动的窗口(不要问我为什么 i-same[i] 是单增的,事实如此)

移动的窗口,求窗口中最大的数……很眼熟啊!经验和直觉都告诉我们这就是单调队列……

大家理性理解一下就好,就好~

[CTSC 2012][BZOJ 2806]Cheat的更多相关文章

  1. BZOJ 2806 cheat

    首先这个题目显然是要二分转换成判断可行性的 之后我们考虑DP 设f(i)表示 1->i 熟悉的子串的长度的最大值 那么对于i这个点,要么不在熟悉的子串中,要么在熟悉的子串中 所以得到 f(i)= ...

  2. 后缀自动机SAM BZOJ 2806

    终于遇到了一道后缀数组不能过 一定要学SAM的题... (看了半个下午+半个上午) 现在总结一下(是给我自己总结..所以只总结了我觉得重要的 .. 看不太懂的话可以To   http://blog.c ...

  3. bzoj 2806: [Ctsc2012]Cheat 后缀自动机DP

    2806: [Ctsc2012]Cheat Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 583  Solved: 330[Submit][Statu ...

  4. BZOJ 2806: [Ctsc2012]Cheat [广义后缀自动机 单调队列优化DP 二分]

    2806: [Ctsc2012]Cheat 题意: 多个主串和多个询问串,每次询问将询问串分成多个连续子串,如果一个子串长度>=L且在主串中出现过就是熟悉的 如果熟悉的字符串长度>=询问串 ...

  5. 【BZOJ 2806】 2806: [Ctsc2012]Cheat (SAM+二分+DP+单调队列)

    2806: [Ctsc2012]Cheat Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 1262  Solved: 643 Description ...

  6. BZOJ 2806 Luogu P4022 [CTSC2012]Cheat (广义后缀自动机、DP、二分、单调队列)

    题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=2806 (luogu) https://www.luogu.org/pro ...

  7. bzoj 2806: [Ctsc2012]Cheat

    传送门 好久没刷bzoj惹…… 题意不说可以嘛. 首先二分答案. SAM的事情搞完以后就是dp辣. 我们已经对于每个位置i,找到了最小的一个k,使得[k,i]这个子串在模版串中出现过.那么我们需要做的 ...

  8. bzoj 2806 [Ctsc2012]Cheat——广义后缀自动机+单调队列优化DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2806 只想着怎么用后缀数据结构做,其实应该考虑结合其他算法. 可以二分那个长度 L .设当前 ...

  9. BZOJ 2806 【CTSC2012】 Cheat

    题目链接:Cheat 话说这道题很久以前某人就给我们考过,直到现在,我终于把这个坑填上了…… 这道题要我们把一个串\(S\)划分成若干块,每块长度不小于\(L_0\),使得能够在文章库中完全匹配的块的 ...

随机推荐

  1. Windows Azure上搭建SSTP VPN

    一.服务器设置 首先,从0开始,你需要创建一个新的VM.我选择Windows Server 2012 R2,所有步骤和创建普通VM都一样,但最后在防火墙设置里一定要打开TCP 443端口: 创建完成后 ...

  2. Java选择结构、循环结构

    1:switch语句(掌握) (1)格式: switch(表达式) { case 值1: 语句体1; break; case 值2: 语句体2; break; ... default: 语句体n+1; ...

  3. PAT 05-树7 File Transfer

    这次的题让我对选择不同数据结构所产生的结果惊呆了,一开始用的是结构来存储集合,课件上有现成的,而且我也是实在不太会,150ms的时间限制过不去,不得已,看到这题刚好可以用数组,结果7ms最多,有意思! ...

  4. Oracle数据库DECODE函数的使用.

    decode函数是Oracle数据库独有的. 语法为: decode(条件,值1,返回值1,值2,返回值2,...值n,返回值n,缺省值) 例子:select decode(sign(变量1-变量2) ...

  5. SQL优化-索引

    (一)深入浅出理解索引结构 实际上,您可以把索引理解为一种特殊的目录.微软的SQL SERVER提供了两种索引:聚集索引(clustered index,也称聚类索引.簇集索引)和非聚集索引(nonc ...

  6. postgreSQL9.1忘记postgres用户密码怎么办

    在网络上找了一篇文章http://www.linuxidc.com/Linux/2010-04/25232.htm,如下: Ubuntu 9.10下PostgreSQL 8.4忘记密码的解决方法 Ub ...

  7. 安装webmin

    wget http://nchc.dl.sourceforge.net/project/webadmin/webmin/1.740/webmin-1.740.tar.gz 解压缩文件,命令是:tar ...

  8. Unity3D ShaderLab 漫反射卷积光照模型

    Unity3D ShaderLab 漫反射卷积光照模型 漫反射卷积[Diffuse convolution]是一个模糊立方体的过程,它保留了立方图的整体光照强度,只模糊了细节. 这种效果在我们要活得一 ...

  9. [SYSU]每周一赛

    2014年每周一赛第一场 A.Cutting Sausages                                        B.Rectangular Fields //待做    ...

  10. Hex Editor实现Notepad++16进制编辑功能

    把HexEditor.dll文件复制到安装目录(如C:\Program Files\Notepad++\plugins),退出NotePad++重新打开即可!需要以十六进制显示时,点击菜单的:[插件] ...