题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=5446

Unknown Treasure



#### 问题描述
> On the way to the next secret treasure hiding place, the mathematician discovered a cave unknown to the map. The mathematician entered the cave because it is there. Somewhere deep in the cave, she found a treasure chest with a combination lock and some numbers on it. After quite a research, the mathematician found out that the correct combination to the lock would be obtained by calculating how many ways are there to pick m different apples among n of them and modulo it with M. M is the product of several different primes.
#### 输入
> On the first line there is an integer T(T≤20) representing the number of test cases.
>
> Each test case starts with three integers n,m,k(1≤m≤n≤1018,1≤k≤10) on a line where k is the number of primes. Following on the next line are k different primes p1,...,pk. It is guaranteed that M=p1⋅p2⋅⋅⋅pk≤1018 and pi≤105 for every i∈{1,...,k}.
#### 输出
> For each test case output the correct combination on a line.
#### 样例
> **sample input**
> 1
> 9 5 2
> 3 5
>
> **sample output**
> 6

题意

求C[n][m]%(P1 * P2 * P3 * ... * pk)

题解

由于n,m都特别大,所以我们用卢卡斯定理对C[n][m]进行pi进制的拆项得到结果ai,用卢卡斯定理的时候p不能太大,否则就没有意义了,所以我们不能直接用M=P1 * P2 * P3 * ... * pk(而且这个不是质数!!!)进行拆项。

然后对所有的ai用中国剩余定理求出C[n][m]%(P1 * P2 * P3 * ... * pk)。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std; typedef long long LL; LL pi[22], a[22];
LL mul(LL a, LL n, LL mod) {
LL ret = 0;
LL t1 = a, t2 = n;
while (n) {
//puts("mul");
if (n & 1) ret = (ret + a) % mod;
a = (a + a) % mod;
n >>= 1;
}
return ret;
} void gcd(LL a, LL b, LL& d, LL& x, LL& y) {
if (!b) { d = a; x = 1; y = 0; }
else { gcd(b, a%b, d, y, x); y -= x*(a / b); }
} LL inv(LL a, LL mod) {
LL d, x, y;
gcd(a, mod, d, x, y);
return d == 1 ? (x + mod) % mod : -1;
} LL get_C(LL n, LL m, LL mod) {
if (n < m) return 0;
LL ret = 1;
for (int i = 0; i < m; i++) ret = ret*(n - i) % mod;
LL fac_m = 1;
for (int i = 1; i <= m; i++) fac_m = fac_m*i%mod;
return ret*inv(fac_m, mod) % mod;
} LL lucas(LL n, LL m, LL mod) {
if (m == 0) return 1LL;
return get_C(n%mod, m%mod, mod)*lucas(n / mod, m / mod, mod) % mod;
} LL china(int n) {
LL M = 1, d, y, x = 0;
for (int i = 0; i < n; i++) M *= pi[i];
for (int i = 0; i < n; i++) {
LL w = M / pi[i];
gcd(pi[i], w, d, d, y);
x = (x + mul(mul(y, w, M), a[i], M)) % M;
}
return (x + M) % M;
} int main() {
int tc;
scanf("%d", &tc);
while (tc--) {
LL n, m; int k;
scanf("%lld%lld%d", &n, &m, &k);
for (int i = 0; i < k; i++) {
scanf("%lld", &pi[i]);
a[i] = lucas(n, m, pi[i]);
}
LL ans = china(k);
printf("%lld\n", ans);
}
return 0;
}

HDU 5446 Unknown Treasure Lucas+中国剩余定理的更多相关文章

  1. hdu 5446 Unknown Treasure 卢卡斯+中国剩余定理

    Unknown Treasure Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Other ...

  2. HDU 5446 Unknown Treasure Lucas+中国剩余定理+按位乘

    HDU 5446 Unknown Treasure 题意:求C(n, m) %(p[1] * p[2] ··· p[k])     0< n,m < 1018 思路:这题基本上算是模版题了 ...

  3. hdu 5446 Unknown Treasure Lucas定理+中国剩余定理

    Unknown Treasure Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Other ...

  4. hdu 5446 Unknown Treasure lucas和CRT

    Unknown Treasure Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?p ...

  5. HDU 5446 Unknown Treasure(lucas + 中国剩余定理 + 模拟乘法)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5446 题目大意:求C(n, m) % M, 其中M为不同素数的乘积,即M=p1*p2*...*pk, ...

  6. Hdu 5446 Unknown Treasure (2015 ACM/ICPC Asia Regional Changchun Online Lucas定理 + 中国剩余定理)

    题目链接: Hdu 5446 Unknown Treasure 题目描述: 就是有n个苹果,要选出来m个,问有多少种选法?还有k个素数,p1,p2,p3,...pk,结果对lcm(p1,p2,p3.. ...

  7. HDU 5446——Unknown Treasure——————【CRT+lucas+exgcd+快速乘+递推求逆元】

    Each test case starts with three integers n,m,k(1≤m≤n≤1018,1≤k≤10) on a line where k is the number o ...

  8. HDU 5446 Unknown Treasure

    Unknown Treasure Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Other ...

  9. HDU 5446 Unknown Treasure(Lucas定理+CRT)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5446 [题目大意] 给出一个合数M的每一个质因子,同时给出n,m,求C(n,m)%M. [题解] ...

随机推荐

  1. IOS 支付功能的实现

    支付宝是第三方支付平台,简单来说就是协调客户,商户,银行三者关系的方便平台 使用支付宝进行一个完整的支付功能,大致有以下步骤: a 与支付宝进行签约,获得商户ID(partner)和账号ID(sell ...

  2. MySQL的相关概念介绍

    MySQL 为关系型数据库(Relational Database Management System), 这种所谓的"关系型"可以理解为"表格"的概念, 一个 ...

  3. 怎样用foreach去修改数组之中的数据

    $table_exchange=array(1,2,3,4,5,6,7,8); foreach ($table_exchange as $b=>$c){ $table_exchange[$b]= ...

  4. Learning Scrapy笔记(三)- Scrapy基础

    摘要:本文介绍了Scrapy的基础爬取流程,也是最重要的部分 Scrapy的爬取流程 Scrapy的爬取流程可以概括为一个方程式:UR2IM,其含义如下图所示 URL:Scrapy的运行就从那个你想要 ...

  5. c语言内存分配-malloc

    malloc 原型:(原来返回类型是char) extern void *malloc(unsigned int num_bytes); 头文件: #include <stdlib.h> ...

  6. 装黑苹果的那些事儿(以ThinkpadE540为例)

    苹果系统,有着比window更好的安全性和方便性,更重要的事,没有MAC系统环境,进行iOS开发,是很麻烦的,对新手来说,是很懊恼的一件事.但是白苹果像件奢侈品,吾等常人,很难有经济消费.如是黑苹果是 ...

  7. poj 2507Crossed ladders <计算几何>

    链接:http://poj.org/problem?id=2507 题意:哪个直角三角形,一直角边重合, 斜边分别为 X, Y, 两斜边交点高为 C , 求重合的直角边长度~ 思路: 设两个三角形不重 ...

  8. 内核同步机制 RCU

    Evernote分享地址:http://www.evernote.com/shard/s133/sh/8807320d-f54d-4e90-a31b-e2a3d35509ee/7539dc3931b8 ...

  9. Android WIFI 启动流程

    参考:http://blog.chinaunix.net/uid-26215986-id-3260413.html 一. WIFI 工作步骤 1. Wifi模块初始化 2. Wifi启动 3. 查找热 ...

  10. IOS开发的国际化

    一 app中内容的国际化 1 添加简体中文支持(默认只有英文)         在xcode的PROJECT->Info->Localizations下添加简体中文的支持.   2新建St ...