题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=5446

Unknown Treasure



#### 问题描述
> On the way to the next secret treasure hiding place, the mathematician discovered a cave unknown to the map. The mathematician entered the cave because it is there. Somewhere deep in the cave, she found a treasure chest with a combination lock and some numbers on it. After quite a research, the mathematician found out that the correct combination to the lock would be obtained by calculating how many ways are there to pick m different apples among n of them and modulo it with M. M is the product of several different primes.
#### 输入
> On the first line there is an integer T(T≤20) representing the number of test cases.
>
> Each test case starts with three integers n,m,k(1≤m≤n≤1018,1≤k≤10) on a line where k is the number of primes. Following on the next line are k different primes p1,...,pk. It is guaranteed that M=p1⋅p2⋅⋅⋅pk≤1018 and pi≤105 for every i∈{1,...,k}.
#### 输出
> For each test case output the correct combination on a line.
#### 样例
> **sample input**
> 1
> 9 5 2
> 3 5
>
> **sample output**
> 6

题意

求C[n][m]%(P1 * P2 * P3 * ... * pk)

题解

由于n,m都特别大,所以我们用卢卡斯定理对C[n][m]进行pi进制的拆项得到结果ai,用卢卡斯定理的时候p不能太大,否则就没有意义了,所以我们不能直接用M=P1 * P2 * P3 * ... * pk(而且这个不是质数!!!)进行拆项。

然后对所有的ai用中国剩余定理求出C[n][m]%(P1 * P2 * P3 * ... * pk)。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std; typedef long long LL; LL pi[22], a[22];
LL mul(LL a, LL n, LL mod) {
LL ret = 0;
LL t1 = a, t2 = n;
while (n) {
//puts("mul");
if (n & 1) ret = (ret + a) % mod;
a = (a + a) % mod;
n >>= 1;
}
return ret;
} void gcd(LL a, LL b, LL& d, LL& x, LL& y) {
if (!b) { d = a; x = 1; y = 0; }
else { gcd(b, a%b, d, y, x); y -= x*(a / b); }
} LL inv(LL a, LL mod) {
LL d, x, y;
gcd(a, mod, d, x, y);
return d == 1 ? (x + mod) % mod : -1;
} LL get_C(LL n, LL m, LL mod) {
if (n < m) return 0;
LL ret = 1;
for (int i = 0; i < m; i++) ret = ret*(n - i) % mod;
LL fac_m = 1;
for (int i = 1; i <= m; i++) fac_m = fac_m*i%mod;
return ret*inv(fac_m, mod) % mod;
} LL lucas(LL n, LL m, LL mod) {
if (m == 0) return 1LL;
return get_C(n%mod, m%mod, mod)*lucas(n / mod, m / mod, mod) % mod;
} LL china(int n) {
LL M = 1, d, y, x = 0;
for (int i = 0; i < n; i++) M *= pi[i];
for (int i = 0; i < n; i++) {
LL w = M / pi[i];
gcd(pi[i], w, d, d, y);
x = (x + mul(mul(y, w, M), a[i], M)) % M;
}
return (x + M) % M;
} int main() {
int tc;
scanf("%d", &tc);
while (tc--) {
LL n, m; int k;
scanf("%lld%lld%d", &n, &m, &k);
for (int i = 0; i < k; i++) {
scanf("%lld", &pi[i]);
a[i] = lucas(n, m, pi[i]);
}
LL ans = china(k);
printf("%lld\n", ans);
}
return 0;
}

HDU 5446 Unknown Treasure Lucas+中国剩余定理的更多相关文章

  1. hdu 5446 Unknown Treasure 卢卡斯+中国剩余定理

    Unknown Treasure Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Other ...

  2. HDU 5446 Unknown Treasure Lucas+中国剩余定理+按位乘

    HDU 5446 Unknown Treasure 题意:求C(n, m) %(p[1] * p[2] ··· p[k])     0< n,m < 1018 思路:这题基本上算是模版题了 ...

  3. hdu 5446 Unknown Treasure Lucas定理+中国剩余定理

    Unknown Treasure Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Other ...

  4. hdu 5446 Unknown Treasure lucas和CRT

    Unknown Treasure Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?p ...

  5. HDU 5446 Unknown Treasure(lucas + 中国剩余定理 + 模拟乘法)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5446 题目大意:求C(n, m) % M, 其中M为不同素数的乘积,即M=p1*p2*...*pk, ...

  6. Hdu 5446 Unknown Treasure (2015 ACM/ICPC Asia Regional Changchun Online Lucas定理 + 中国剩余定理)

    题目链接: Hdu 5446 Unknown Treasure 题目描述: 就是有n个苹果,要选出来m个,问有多少种选法?还有k个素数,p1,p2,p3,...pk,结果对lcm(p1,p2,p3.. ...

  7. HDU 5446——Unknown Treasure——————【CRT+lucas+exgcd+快速乘+递推求逆元】

    Each test case starts with three integers n,m,k(1≤m≤n≤1018,1≤k≤10) on a line where k is the number o ...

  8. HDU 5446 Unknown Treasure

    Unknown Treasure Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Other ...

  9. HDU 5446 Unknown Treasure(Lucas定理+CRT)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5446 [题目大意] 给出一个合数M的每一个质因子,同时给出n,m,求C(n,m)%M. [题解] ...

随机推荐

  1. Send User to a Portal Folder

    Sometimes you would want to give users the option to click a button on the page and send them back t ...

  2. Filestream读取或写入文件

    using System.IO;//引用 System.IO namespace filestream { public partial class Form1 : Form { public For ...

  3. c#中执行多条sql语句【ORA-00911: 无效字符】

    问题描述: 在plsql里执行多条sql语句的时候,使用“,”(逗号)分隔,测试可以执行多条,而在C#执行多条sql语句的时候[ORA-00911: 无效字符]. 有时我们需要一次性执行多条sql语句 ...

  4. 16)JAVA实现回调(Android,Swing中各类listener的实现)

           熟悉MS-Windows和X Windows事件驱动设计模式的开发人员,通常是把一个方法的指针传递给事件源,当某一事件发生时来调用这个方法(也称为"回调").Java ...

  5. 内存分配函数malloc、realloc、calloc、_alloca

    1.内存分配函数_alloca.malloc.realloc.calloc: _alloca 函数原型void * __cdecl _alloca(size_t); 头文件:malloc.h _all ...

  6. SQL Server 一些关键字详解(一)

    1.CROSS APPLY 和OUTER APPLY MSDN解释如下(个人理解不是很清晰): 使用 APPLY 运算符可以为实现查询操作的外部表表达式返回的每个行调用表值函数.表值函数作为右输入,外 ...

  7. L2-015. 互评成绩

    学生互评作业的简单规则是这样定的:每个人的作业会被k个同学评审,得到k个成绩.系统需要去掉一个最高分和一个最低分,将剩下的分数取平均,就得到这个学生的最后成绩.本题就要求你编写这个互评系统的算分模块. ...

  8. ToolBar存档

    上图是将本阶段要完成的结果画面做了标示,结合下面的描述希望大家能明白. colorPrimaryDark(状态栏底色):在风格 (styles) 或是主题 (themes) 里进行设定. App ba ...

  9. Apple Watch应用开发经验谈:我遇到的那些坑

    本文作者张忠良是滴答清单Apple Watch版应用的开发工程师,他用了一周的时间使用纯Objective-C语言完成了Apple Watch版滴答清单应用的开发工作.在这里,他从开发角度阐述了个人对 ...

  10. 从零开始学ios开发(三):第一个有交互的app

    感谢大家的关注,也给我一份动力,让我继续前进.有了自己的家庭有了孩子,过着上有老下有小的生活,能够挤出点时间学习真的很难,每天弄好孩子睡觉已经是晚上10点左右了,然后再弄自己的事情,一转眼很快就到12 ...