题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=4497

解题思路:将满足条件的一组x,z,y都除以G,得到x‘,y',z',满足条件gcd(x',y',x') = 1,同时lcm(x',y',x') = G/L.

特判,当G%L != 0 时,无解。

然后素数分解G/L,假设G/L = p1^t1 * p2^t2 *````* pn^tn。

满足上面条件的x,y,z一定为这样的形式。

x' = p1^i1 * p2^i2 *```* pn^in.

y' = p1^j1 * p2^j2 * ```*pn^jn.

z' = p1^k1 * p2^k2 * ```*pn^kn.

为了满足上面的条件,对于p1,一定有max(i1,j1,k1) = t1.min(i1,j1,k1) =0;则当选定第一个数为0,第二个数为t1时,第三个数可以为0-t1,又由于有顺序的,只有

(0,t1,t1) 和(0,t1,0)这两种情形根据顺序只能产生四种结果,其他的由于三个数都不一样,一定能产生6种,所以最后产生了6*(t1-1)+3*2 = 6*t1种,根据乘法原理以及关于素数分解的唯一性,反过来,素数组合必然也是唯一的数,一共有6*t1 * 6*t2 *`````*6*tn种选法。

另一种思考:容斥原理,对于p1,一共有(t1+1)^3种,但是没有最高位t1的选法是不合法的,减去,一共有t1^3种选法不合法,没有最低位0的选法是不合法的,也是t1^3,发现多减了,所以加上多减的既没有最高位也没有最低位的(t1-1)^3,通过化简得6*t1`````

贴代码:

 #include<cstdio>
#include<cmath>
#define N 100005
int a[N],b[N];
void factor(int n,int &tot)
{
int temp,i;
temp =(int)(sqrt(n) +);
tot =-;
for(int i=; i <= temp; ++i)
{
if(n%i == )
{
a[++tot] = i;
b[tot] = ;
while(n%i == )
{
++b[tot];
n /= i;
}
}
}
if(n != )
{
a[++tot] = n;
b[tot] = ;
}
}
int main()
{
// freopen("in.txt","r",stdin);
int t,G,L;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&G,&L);
if(L%G != )
{
printf("0\n");
continue;
}
L = L/G;
int tot;
factor(L,tot);
long long int ans =;
for(int i=; i<=tot; ++i) ans *= (*b[i]);
printf("%I64d\n",ans);
}
return ;
}

HDU 4497 数论+组合数学的更多相关文章

  1. GCD and LCM HDU 4497 数论

    GCD and LCM HDU 4497 数论 题意 给你三个数x,y,z的最大公约数G和最小公倍数L,问你三个数字一共有几种可能.注意123和321算两种情况. 解题思路 L代表LCM,G代表GCD ...

  2. HDU 4497 GCD and LCM (数论)

    题意:三个数x, y, z. 给出最大公倍数g和最小公约数l.求满足条件的x,y,z有多少组. 题解:设n=g/l n=p1^n1*p2^n2...pn^nk (分解质因数 那么x = p1^x1 * ...

  3. 数论 - 组合数学 + 素数分解 --- hdu 2284 : Solve the puzzle, Save the world!

    Solve the puzzle, Save the world! Problem Description In the popular TV series Heroes, there is a ta ...

  4. HDU 4497 GCD and LCM(数论+容斥原理)

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  5. 数论——算数基本定理 - HDU 4497 GCD and LCM

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  6. hdu 4497 GCD and LCM 数学

    GCD and LCM Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=4 ...

  7. HDU 4497 GCD and LCM(分解质因子+排列组合)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4497 题意:已知GCD(x, y, z) = G,LCM(x, y, z) = L.告诉你G.L,求满 ...

  8. HDU 4497 GCD and LCM (分解质因数)

    链接 :  http://acm.hdu.edu.cn/showproblem.php?pid=4497 假设G不是L的约数 就不可能找到三个数. L的全部素因子一定包括G的全部素因子 而且次方数 ...

  9. hdu 4542 数论 + 约数个数相关 腾讯编程马拉松复赛

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=4542 小明系列故事--未知剩余系 Time Limit: 500/200 MS (Java/Others) ...

随机推荐

  1. addChildViewController

    http://www.cnblogs.com/zengyou/p/3386605.html //在parent view controller 中添加 child view controller Fi ...

  2. numpy 总结

    1.array.sum() from numpy import * import operator group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) ...

  3. struts2 文件的上传下载 表单的重复提交 自定义拦截器

    文件上传中表单的准备 要想使用 HTML 表单上传一个或多个文件 须把 HTML 表单的 enctype 属性设置为 multipart/form-data 须把 HTML 表单的method 属性设 ...

  4. C++-bool的值

    /////////////////////////////////////////////////////////////////////////////// // // FileName : boo ...

  5. 使用eclipse创建在myeclipse中运行的web工程

    今天在跟随慕课网学习java时,遇到课程中老师使用Myeclipse,我用的是eclipse,那么就使用eclipse创建在Myeclipse项目 参考: 如何在Eclipse配置Tomcat服务器 ...

  6. VC单文档对话框添加托盘图标

    一 单文档添加托盘 1. 在CMainFrame中定义NOTIFYICONDATA结构m_notify 2.在OnCreate中添加托盘初始化代码 int CMainFrame::OnCreate(L ...

  7. [转]Android进程与线程基本知识

    转自:http://www.cnblogs.com/hanyonglu/archive/2012/04/12/2443262.html 本文介绍Android平台中进程与线程的基本知识. 很早的时候就 ...

  8. Unity4.3.3激活

    Unity4.X Win版本的破解方法: <ignore_js_op> 1.安装unity4.X,一路按提示下一步,要断网,直到激活运行软件后再联网2.将Unity 4.x Pro Pat ...

  9. GET,POST——简述

    本文主要对GET与POST基本区别进行汇总并掌握. HTTPHTTP(即超文本传输协议)是现代网络中最常见和常用的协议之一,设计它的目的是保证客户机和服务器之间的通信.HTTP 的工作方式是客户端与服 ...

  10. C#基础知识学习

    C#基础知识整理 学习地址:http://blog.csdn.net/column/details/csarp.html