Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white.

Consider a set consisting of k (0 ≤ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices.

Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7).

Input

The first line contains an integer n (2  ≤ n ≤ 105) — the number of tree vertices.

The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≤ pi ≤ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1.

The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white.

Output

Output a single integer — the number of ways to split the tree modulo 1000000007 (109 + 7).

Sample test(s)
input
3
0 0
0 1 1
output
2
input
6
0 1 1 0 4
1 1 0 0 1 0
output
1
input
10
0 1 2 1 4 4 4 0 8
0 0 0 1 0 1 1 0 0 1
output
27

题意:
一棵树,n个节点,编号为0~n-1
每一个节点涂有黑色或者白色,1代表黑色,0代表白色
若在树上去掉k条边,就把树分成k+1部分,每一个部分也是一棵树,若每一部分都有且只有一个节点是黑色,
则这是一个合理的操作。
求合理操作的方案数%(1e9+7) 如果把黑色看成节点的值为1,白色看成节点的值为0
一棵树的值=树上所有节点的值之和
则这道题转化为:
把一棵树分成若干个部分,每一部分的值都为1的方案数。 树形DP dp[i][0] : 以i为根的子树,i所在部分的值为0的方案数%mod
dp[i][1] : 以i为根的子树,i所在部分的值为1的方案数%mod 以root=0进行DFS
则输出:dp[0][1] 代码:
 #include<cstdio>
#include<cstring> using namespace std; const int maxn=1e5+;
const int mod=1e9+;
#define ll long long struct Edge
{
int to,next;
};
Edge edge[maxn<<];
int head[maxn];
int tot=;
ll dp[maxn][];
int cost[maxn]; void init()
{
memset(head,-,sizeof head);
memset(dp,,sizeof dp);
} void addedge(int u,int v)
{
edge[tot].to=v;
edge[tot].next=head[u];
head[u]=tot++;
} void solve(int );
void dfs(int ,int ); int main()
{
init();
int n;
scanf("%d",&n);
for(int i=;i<n;i++)
{
int p;
scanf("%d",&p);
addedge(i,p);
addedge(p,i);
}
for(int i=;i<n;i++)
{
scanf("%d",&cost[i]);
}
solve(n);
return ;
} void solve(int n)
{
dfs(,-);
printf("%d\n",(int)dp[][]);
return ;
} void dfs(int u,int pre)
{
if(cost[u])
{
dp[u][]=;
dp[u][]=;
}
else
{
dp[u][]=;
dp[u][]=;
}
for(int i=head[u];~i;i=edge[i].next)
{
int v=edge[i].to;
if(v==pre)
continue;
dfs(v,u);
if(cost[u])
{
dp[u][]*=(dp[v][]+dp[v][]);
dp[u][]%=mod;
}
else
{
dp[u][]=dp[u][]*(dp[v][]+dp[v][])+dp[u][]*dp[v][];
dp[u][]%=mod;
dp[u][]*=(dp[v][]+dp[v][]);
dp[u][]%=mod;
}
}
}

CF 461B Appleman and Tree 树形DP的更多相关文章

  1. Codeforces 461B. Appleman and Tree[树形DP 方案数]

    B. Appleman and Tree time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  2. Codeforces 461B Appleman and Tree(木dp)

    题目链接:Codeforces 461B Appleman and Tree 题目大意:一棵树,以0节点为根节点,给定每一个节点的父亲节点,以及每一个点的颜色(0表示白色,1表示黑色),切断这棵树的k ...

  3. Codeforces Round #263 Div.1 B Appleman and Tree --树形DP【转】

    题意:给了一棵树以及每个节点的颜色,1代表黑,0代表白,求将这棵树拆成k棵树,使得每棵树恰好有一个黑色节点的方法数 解法:树形DP问题.定义: dp[u][0]表示以u为根的子树对父亲的贡献为0 dp ...

  4. codeforces Round #263(div2) D. Appleman and Tree 树形dp

    题意: 给出一棵树,每个节点都被标记了黑或白色,要求把这棵树的其中k条变切换,划分成k+1棵子树,每颗子树必须有1个黑色节点,求有多少种划分方法. 题解: 树形dp dp[x][0]表示是以x为根的树 ...

  5. CF 161D Distance in Tree 树形DP

    一棵树,边长都是1,问这棵树有多少点对的距离刚好为k 令tree(i)表示以i为根的子树 dp[i][j][1]:在tree(i)中,经过节点i,长度为j,其中一个端点为i的路径的个数dp[i][j] ...

  6. codeforces 416B. Appleman and Tree 树形dp

    题目链接 Fill a DP table such as the following bottom-up: DP[v][0] = the number of ways that the subtree ...

  7. 熟练剖分(tree) 树形DP

    熟练剖分(tree) 树形DP 题目描述 题目传送门 分析 我们设\(f[i][j]\)为以\(i\)为根节点的子树中最坏时间复杂度小于等于\(j\)的概率 设\(g[i][j]\)为当前扫到的以\( ...

  8. hdu-5834 Magic boy Bi Luo with his excited tree(树形dp)

    题目链接: Magic boy Bi Luo with his excited tree Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: ...

  9. CF 337D Book of Evil 树形DP 好题

    Paladin Manao caught the trail of the ancient Book of Evil in a swampy area. This area contains n se ...

随机推荐

  1. Cent OS 6.5安装 php memcached扩展

    首先查看memcache的依赖库是否有安装,如果对这个有疑问可以参考php手册的memcache的安装需求说明 命令如下: 查询: rpm -qa | grep libevent 安装:yum -y ...

  2. NOI 银河英雄传说

    并查集水题,记录祖先,大小和深度即可,每次用祖先的大小和深度更新后代的深度. #include <cstdio> #include <iostream> #include &l ...

  3. 让PHP代码更危险----使用别的系统命令--如sql语句--exec(),system()方法甚至html的js语句

    如题,所以涉及到别的语言时,程序就可能更加不安全.

  4. easyUI之message

    message组件,依赖于window组件.progressbar组件两个面板. 它有几个不同的显示风格,与vb中的msgbox相对应,有alert.progrss.confirm.prompt等形式 ...

  5. 【转】深入PHP FTP类的详解

    FTP是一种文件传输协议,它支持两种模式,一种方式叫做Standard (也就是Active,主动方式),一种是 Passive (也就是PASV,被动方式). Standard模式 FTP 的客户端 ...

  6. ORACLE 常用日期函数

    1 . add_months(arg1,num) 返回日期arg1加num个月的新日期. select add_months(date'2011-1-1',1) from dual; result:  ...

  7. Redis配制说明

    配置文件参数说明:  1. Redis默认不是以守护进程的方式运行,可以通过该配置项修改,使用yes启用守护进程     daemonize no 2. 当Redis以守护进程方式运行时,Redis默 ...

  8. linux 编译安装nginx,配置自启动脚本

    本文章来给各位同学介绍一篇关于linux 编译安装nginx,配置自启动脚本教程,希望有需要了解的朋友可一起来学习学习哦. 在公司的suse服务器装nginx,记录下安装过程: 参照这篇文章:Linu ...

  9. window.open窗口关闭后刷新父窗口代码

    window.open窗口关闭后刷新父窗口代码 window.opener.location.href=window.opener.location.href;window.close();

  10. Struts2 - Action no cache

    整了两天,终于找到一个比较满意的答案了:如何让action不被浏览器缓存 写一个interceptor: package com.my.interceptor; import javax.servle ...