关联规则挖掘之apriori算法
前言:
众所周知,关联规则挖掘是数据挖掘中重要的一部分,如著名的啤酒和尿布的问题。今天要学习的是经典的关联规则挖掘算法——Apriori算法
一、算法的基本原理
由k项频繁集去导出k+1项频繁集。
二、算法流程
1.扫描事务数据库,找出1项集,并根据最小支持度计数,剪枝得出频繁1项集。k=1.
2.由频繁k项集进行连接步操作,形成候选的k+1项集,并扫描数据库,得出每一项的支持度计数,并根据最小支持度计数,剪枝得到频繁k+1项集。
迭代的进行第2步直到频繁k项集是空的。
3.由频繁项集构造关联规则。先列出所有可能的关联规则,然后计算相应的置信度,最终筛选出满足最小置信度的强关联规则。
三、算法实现
测试数据集:data.txt
1, 7, 15, 44, 49
2, 1, 19
3, 1, 19
4, 3, 4, 15, 18, 35, 44
5, 2, 4, 7, 9, 23
6, 14, 21, 44
7, 4, 12, 31, 36, 44, 48
8, 15, 27, 28
9, 2, 28
10, 3, 18, 35
11, 23, 24, 40, 41, 43
12, 20, 43, 48
13, 49
14, 1, 19, 26
15, 5, 22, 39
16, 16, 32, 45
17, 4, 6, 9, 10, 16, 22
18, 1, 19, 23
19, 7, 11, 37, 45
20, 3, 18, 32, 35
21, 1, 8, 19, 47
22, 34, 39, 44
23, 13, 19
24, 4, 9, 38
25, 7, 22, 48
26, 7, 11, 14
27, 23, 24, 40, 41, 43
28, 9, 14
29, 0, 2, 42
30, 13, 35
31, 23
32, 8, 21, 25, 38
33, 4, 46
34, 23, 24, 40, 41, 43
35, 4, 17, 29, 47
36, 12, 31, 36
37, 14, 22, 26, 37, 44
38, 0, 16, 30, 32, 45, 47
39, 1, 11, 19, 25, 27, 29, 46
40, 15, 16, 18, 21, 26
41, 4, 10, 14
42, 3, 36
43, 23, 27, 28
44, 15, 21, 40
45, 10, 19, 25, 32
46, 11, 22, 44
47, 8
48, 0, 2, 46
49, 33, 42
50, 28, 39
51, 7, 17, 28
52, 1, 19
53, 32, 34
54, 0, 2, 46
55, 15, 30, 45
56, 39, 49
57, 46
58, 4, 9, 19
59, 0, 2, 16, 19, 46
60, 17, 21, 40
61, 2, 4, 6, 9, 39
62, 23, 24, 40, 41, 43
63, 13, 27, 28
64, 40
65, 12, 14, 44
66, 27, 28
67, 1, 36
68, 12, 31, 36, 48
69, 3, 18, 35
70, 5, 12, 16
71, 30, 49
72, 7, 29, 30
73, 17, 19, 30
74, 1, 13, 36
75, 19, 33, 49
76, 1, 5, 14, 38
77, 31
78, 1, 5, 8, 14, 22, 26
79, 7, 27, 30, 36, 37, 43
80, 13, 35, 42
81, 5, 22, 32
82, 7, 11, 20, 28, 37, 45
83, 23, 24, 40, 41
84, 3, 5, 14, 22, 36
85, 12, 31, 36, 48
86, 45
87, 12, 31, 36, 48
88, 14, 44
89, 5, 19, 22, 34, 43
90, 0, 2, 45, 46
91, 16, 32, 45, 47, 48
92, 1, 48
93, 1, 3, 18, 35
94, 7, 11, 37, 45
95, 16, 26, 32, 41, 45
96, 1, 29, 30
97, 1, 19
98, 1
99, 14, 22, 37
100, 22, 34, 40
101, 31
102, 16, 17, 43
103, 8, 19, 20, 48
104, 1, 12, 15, 27, 31, 34, 36, 48
105, 3, 40, 45
106, 13, 18, 21, 41, 47, 48
107, 3, 18, 22, 27
108, 6, 16, 17, 31, 33, 42
109, 5, 22, 27, 35
110, 7, 15, 49
111, 6, 12, 26, 29, 31, 32, 36, 48
112, 11, 13, 14, 44
113, 23, 33, 35
114, 5, 8, 18, 29, 46
115, 41
116, 1, 3, 8, 27, 28
117, 1, 11, 19, 33
118, 23, 24, 40, 41
119, 16, 18, 23, 27, 29, 30, 40, 49
120, 14, 18, 44
121, 0, 2, 46
122, 3, 18, 35
123, 12, 31, 36, 48
124, 7, 11, 20, 29, 37, 45
125, 2, 24, 27
126, 5, 13, 22
127, 22, 42, 46, 47
128, 39, 41
129, 13, 23
130, 1, 24, 40, 42
131, 14, 20, 26, 44
132, 12, 31, 36, 48
133, 7, 21, 27, 28, 33, 36, 47
134, 17, 29, 47
135, 12, 31, 36
136, 4, 9, 11
137, 3, 11, 14, 18, 29, 35
138, 20, 33, 42
139, 22, 44, 46
140, 5, 6, 16, 22, 33, 38, 49
141, 0, 2, 12, 24, 26, 31, 46
142, 0, 6, 25
143, 5, 19, 22
144, 11, 13, 14, 35, 48
145, 17, 29, 35, 44, 47
146, 7, 15
147, 5, 22
148, 0, 1, 2, 46
149, 4, 9, 18, 41
150, 1, 12, 18, 19, 39
151, 0, 2, 19, 22, 46
152, 33, 37, 42
153, 0, 2, 37, 46
154, 11, 18, 35, 45
155, 4, 9, 15
156, 19, 24, 28, 35, 49
157, 5, 22, 37
158, 0, 2, 5, 19, 33, 35, 39, 46
159, 3, 4, 5, 48
160, 4, 6, 18, 28, 35
161, 3, 18, 31, 35
162, 6, 17, 25, 49
163, 17
164, 3, 8, 9, 20, 22, 23, 42
165, 4, 15, 17, 21, 26, 36, 48
166, 14, 41, 44
167, 19, 28, 42
168, 4, 9
169, 13, 31, 33, 41, 42
170, 5, 22, 28
171, 0, 16, 32
172, 5, 28, 43
173, 24, 36, 37, 42
174, 31
175, 40, 42
176, 11, 34, 48
177, 14, 28, 40, 43
178, 0, 13, 26
179, 16, 32, 45
180, 10, 14, 44, 46
181, 4, 7, 9, 19, 36
182, 23, 24, 40, 41, 43
183, 4, 9, 37
184, 5, 22, 31
185, 21, 24, 29
186, 0, 6, 22, 46
187, 3, 18, 21, 35, 39, 46
188, 12, 31, 36, 38, 48
189, 28
190, 23, 24, 40, 41, 43
191, 12, 24
192, 6, 27, 28
193, 23, 24, 40, 41, 43
194, 27, 28
195, 5, 14, 16, 22
196, 5, 22
197, 27, 28, 44, 47
198, 5, 22
199, 0, 2, 46
200, 0, 10, 30
201, 15, 33, 42
202, 4, 9, 40
203, 1, 36
204, 23, 24, 40, 41
205, 25, 27, 28, 32
206, 7, 11, 37, 45
207, 20, 48
208, 7, 11, 37, 45
209, 9, 27, 28
210, 7, 11, 37
211, 1, 2, 9, 22, 48
212, 7, 27, 39, 45
213, 1, 6, 8, 15, 18, 19, 21, 42
214, 23, 24, 40, 41
215, 4, 14, 20, 32, 36, 44
216, 16, 32, 45
217, 18, 26, 42, 45
218, 2, 11, 23
219, 11, 15, 35
220, 31, 39, 43, 45, 46
221, 0, 2, 28, 40, 46
222, 13, 24, 26, 35, 39, 47
223, 7, 21, 23, 30, 36
224, 23, 40, 47
225, 5, 22
226, 1, 5, 19, 30
227, 7, 15, 49
228, 7, 11, 37, 45
229, 23, 31, 34, 45
230, 7, 29, 48
231, 27, 28
232, 24, 44
233, 4, 5, 9, 39
234, 5, 22, 25, 28, 34, 46
235, 23, 32, 48
236, 16, 42
237, 5, 22
238, 4, 9, 15, 25
239, 1, 12, 16, 17, 19, 26, 48
240, 1, 3, 16, 19, 35
241, 11, 12
242, 4, 9, 10, 12, 45
243, 12, 31, 36, 46, 48
244, 17, 28, 47
245, 3, 18, 35
246, 4, 9
247, 7, 11, 37, 45
248, 5, 12, 22
249, 6, 14, 38, 48
250, 9, 10, 34, 36, 42
251, 3, 18, 35
252, 3
253, 14, 27
254, 0, 1, 19
255, 3, 18, 24, 35
256, 12, 31, 36, 48
257, 19, 31, 41
258, 1, 11, 14, 32, 34, 35
259, 5, 14, 28, 39, 49
260, 9, 14, 21, 46
261, 6
262, 5, 22, 31
263, 11, 40
264, 0, 2, 46
265, 23, 24, 40, 41, 43
266, 3, 14, 23, 44
267, 18, 22, 42, 49
268, 3, 24
269, 12, 31, 36, 48
270, 20, 25, 27
271, 15, 30, 39
272, 7, 15, 49
273, 12, 31, 36, 48
274, 16, 18, 32, 42
275, 27, 31, 33, 42
276, 5, 9, 22, 43
277, 2, 4, 36, 40, 41, 48
278, 19, 28, 30, 32
279, 2, 31, 39, 44
280, 1, 2, 19, 21, 23, 28, 45
281, 7, 10, 14, 16, 23, 32, 45
282, 4, 9, 14, 36, 44
283, 21, 29
284, 9, 13, 17, 46
285, 38, 39
286, 1, 8, 19
287, 0, 33, 42
288, 2, 33, 36, 47
289, 12, 31, 36
290, 28
291, 16, 27, 28
292, 7, 15, 49
293, 8, 21, 24, 33, 34, 40, 42, 44
294, 1, 14, 26, 32, 41
295, 23, 33, 42
296, 14, 21, 23, 24
297, 0, 2, 46
298, 11, 29
299, 1, 23, 33, 42, 47
300, 16, 32, 45
301, 3, 4, 9, 33, 37, 43
302, 19, 25, 30, 43, 46
303, 0, 2, 46
304, 16, 17, 34
305, 5, 21, 22, 25, 27, 31, 42
306, 5, 12, 16, 31, 36
307, 8, 22, 42
308, 3, 27, 36
309, 16, 32, 45
310, 12, 31, 36, 48
311, 5, 22
312, 7, 11, 37, 45
313, 9, 13, 20, 21, 24, 39, 41, 45
314, 1, 9, 15, 24, 37
315, 4, 9
316, 18, 35, 45
317, 0, 2, 46
318, 5, 10, 14, 47
319, 1, 4, 10, 14, 25, 36, 49
320, 12, 34
321, 7, 15, 49
322, 23, 28
323, 1, 19
324, 0, 2, 46
325, 1, 2, 19
326, 7, 11, 37, 45
327, 29, 33, 38, 45, 48
328, 4, 9, 24
329, 1, 19, 23, 30, 44
330, 5, 13
331, 12, 31, 36, 48
332, 0, 2, 46
333, 5, 14, 20, 24, 28, 31, 39, 46
334, 4, 9, 13, 33, 43, 46
335, 5, 14, 22, 29
336, 2, 8, 10, 19, 35, 45
337, 14, 24, 34, 44
338, 5, 22, 28, 30, 47
339, 0, 28, 47
340, 7, 15, 49
341, 5, 9, 28, 41
342, 1, 7, 11, 37
343, 26
344, 44
345, 0, 2, 46
346, 5, 10, 26, 30
347, 8, 12, 14, 33, 44, 47
348, 3, 4, 27, 42
349, 9, 11, 40, 45
350, 3, 4, 9, 11, 12, 47
351, 5, 22, 35
352, 26, 29, 45
353, 4, 9, 31
354, 0, 13, 27, 28, 31, 36
355, 17, 32, 47
356, 1, 31, 41
357, 14, 43, 44
358, 18, 35
359, 5, 10, 16
360, 33, 37
361, 4, 30, 31
362, 9, 14, 25
363, 14, 44
364, 23, 27, 28
365, 9, 18, 22
366, 5, 8, 22
367, 10, 29
368, 3, 15, 16, 20, 33, 45
369, 4, 8, 12, 25, 34
370, 9, 26, 28
371, 7, 9, 15, 49
372, 3, 48, 49
373, 5, 21, 30, 31, 43
374, 4, 9
375, 1, 19, 28
376, 4, 9, 26, 33, 47
377, 1, 13, 19, 41
378, 15, 18, 41
379, 14, 28, 48
380, 5, 22, 47
381, 49
382, 7, 15, 49
383, 8, 28, 47
384, 8, 25, 29
385, 0, 4, 10, 21
386, 41
387, 5, 23, 26, 44
388, 25
389, 4, 9
390, 12, 17, 26, 29, 31, 47
391, 3, 18, 35
392, 7, 11, 34, 37, 45
393, 9, 13, 18, 23, 25, 33, 40
394, 15
395, 5, 17, 22, 40, 48
396, 23, 33, 46
397, 7, 15, 49
398, 16, 32, 45
399, 7, 15, 49
400, 1, 48
401, 2
402, 36, 39, 49
403, 3, 4, 10
404, 34, 36
405, 7, 17, 34, 35, 46
406, 5, 22
407, 32, 34, 36, 42
408, 14, 46
409, 3, 18, 29, 35, 37, 48
410, 27, 33, 42
411, 27, 28
412, 27, 28
413, 4, 9, 13, 21
414, 1, 5, 7, 10, 21, 22, 30, 31
415, 7, 15, 49
416, 4, 5, 14, 23, 42
417, 17, 29, 47
418, 30
419, 5, 33, 42
420, 27, 28, 31
421, 7, 15, 49
422, 16, 32, 45
423, 1, 2, 8, 25, 32
424, 12, 13
425, 16, 44
426, 0, 17, 24
427, 26
428, 4, 10, 27, 28, 43
429, 14
430, 4, 19, 47
431, 33, 42
432, 47
433, 8, 17, 23, 29, 43, 47
434, 0, 5, 33, 46
435, 9, 18, 35, 38, 40, 47
436, 2, 4, 11, 39
437, 4, 5, 9, 23, 24
438, 4, 24, 32
439, 8, 47
440, 2, 19
441, 2, 4, 9, 40
442, 0, 2, 46
443, 11, 19, 33, 42
444, 16, 32, 45
445, 5, 7, 22, 32, 42
446, 4, 33, 47
447, 19, 27, 36
448, 1, 28, 40
449, 23
450, 4, 9, 31, 33
451, 4, 28, 47
452, 25, 27, 34, 49
453, 3, 18, 35
454, 9, 27, 28
455, 14, 15, 35, 36
456, 14, 27, 28
457, 12, 16, 34
458, 0, 2, 13, 18, 24, 36, 46, 47
459, 14, 32, 44
460, 16, 32, 45
461, 2, 8, 16
462, 7, 15, 49
463, 14, 26, 30, 39, 44
464, 1, 23, 32
465, 0, 12, 20, 22, 49
466, 16, 20, 32, 49
467, 23, 24, 40, 41
468, 1, 3, 29, 41, 42, 43, 46
469, 5, 16, 25, 48
470, 17, 29, 47
471, 11, 16, 32, 45
472, 4, 9, 13
473, 17, 47
474, 11, 32
475, 12, 33, 42, 46
476, 23, 24, 40, 41
477, 9, 13, 14, 33, 38, 49
478, 14, 15, 26, 47
479, 3, 18, 35
480, 3, 21, 44
481, 3, 46
482, 9
483, 16, 24, 30, 31, 48
484, 19
485, 33, 42
486, 4, 34
487, 23, 24, 40, 41, 43
488, 5, 22
489, 10, 31
490, 4, 17, 40, 47
491, 39, 47
492, 14, 15, 31
493, 5, 26, 33, 42, 44
494, 13, 30, 38
495, 2, 3, 18, 35, 47
496, 12, 31, 36, 48
497, 17, 27, 28
498, 17, 29, 47
499, 14, 44
500, 0, 2, 46
501, 0, 21, 33, 39
502, 14, 27, 44
503, 12, 31, 36
504, 5, 18
505, 7, 11, 37, 45
506, 0, 20
507, 23, 30
508, 0, 14, 16, 32
509, 8
510, 13, 26, 27, 28, 46
511, 4, 9, 12, 17, 37
512, 10, 20, 37
513, 3, 7, 11, 21, 23
514, 21, 31, 32
515, 0, 1, 5, 23, 32, 42, 44
516, 0, 2, 46
517, 34, 37, 47
518, 16, 28, 32, 45
519, 3, 18, 35
520, 0, 5, 23, 33, 35, 46, 48
521, 14, 28, 29, 44
522, 13, 15, 24
523, 8, 22, 23
524, 11, 14, 26, 28, 41, 43, 45
525, 22, 39
526, 7, 11, 37, 45
527, 0, 2, 15, 16, 22, 35, 46
528, 41, 42
529, 6, 9, 30
530, 4, 13, 37, 45, 49
531, 0, 16
532, 14, 27, 28, 37, 48
533, 13, 28
534, 13, 18
535, 14, 29, 31, 35, 41, 49
536, 15, 34, 46, 48
537, 15, 28
538, 3, 18, 35
539, 12, 31, 36, 48
540, 33, 35, 42
541, 16, 32, 45
542, 7, 9, 15, 43
543, 7, 11, 37, 45
544, 12, 31, 36, 48
545, 14
546, 5, 8, 14, 21, 33, 38
547, 0, 3, 10, 38, 40
548, 10, 14, 18, 47
549, 11, 37, 38
550, 1, 3, 18, 19, 35
551, 3, 5, 22
552, 9, 24, 27, 34
553, 4, 7, 9
554, 0, 12, 35
555, 28, 29, 37
556, 9, 11, 28, 33, 41
557, 14, 44
558, 4, 11, 41, 43
559, 17, 47
560, 16, 20, 27, 32, 45
561, 2, 14, 42
562, 4, 9, 21, 43
563, 17, 29, 47
564, 23, 28, 33, 42
565, 6, 46
566, 3, 18, 35
567, 5, 9, 14, 18, 40
568, 4, 9, 34
569, 13, 14, 43, 44
570, 27, 28
571, 16, 32
572, 6, 14, 22
573, 0, 10, 41
574, 0, 18, 27, 31, 34, 37, 39, 47
575, 5, 7, 22
576, 4, 7
577, 7, 15, 49
578, 4, 15
579, 1, 16, 18, 20, 25, 29, 36, 46
580, 13, 30, 42
581, 24, 25, 31
582, 4, 7, 15, 18
583, 5, 22
584, 28
585, 23, 33, 42
586, 44
587, 15, 19, 27, 28
588, 0, 11, 18, 23, 47
589, 5, 22
590, 7, 11, 37
591, 7, 11, 37, 45
592, 6, 16, 33, 39, 42
593, 23, 24, 40, 41
594, 0, 9, 30, 31
595, 1, 32, 48
596, 2, 27, 28, 43
597, 1, 19
598, 35
599, 3, 10, 18, 35
600, 4, 9, 12, 48
601, 1, 6, 19
602, 7, 15, 49
603, 20, 22, 27
604, 13
605, 15, 16, 26
606, 3, 18, 35
607, 19
608, 5, 22
609, 1, 19
610, 12, 36, 37, 39
611, 2, 3, 10, 34
612, 30, 44
613, 13, 20, 22, 47
614, 4, 12, 26, 45
615, 13, 27, 35, 36
616, 0, 2, 46
617, 7, 10
618, 1, 2, 34, 39
619, 7, 11, 37, 45
620, 39, 43, 44
621, 3, 14, 30
622, 2, 12, 30, 32, 49
623, 1, 19, 32
624, 10, 21, 28, 31
625, 9, 17, 27, 28, 45
626, 10, 11, 16, 32
627, 12, 31, 36, 48
628, 3, 18, 29, 35, 40
629, 23, 24, 40, 41, 43
630, 14, 17, 29, 44, 47
631, 38
632, 0, 2, 46
633, 3, 18, 20, 35
634, 17, 29, 43, 47
635, 0, 6, 19, 26, 43
636, 3, 18, 35
637, 5, 21, 26, 27, 28, 39, 42, 49
638, 12, 31, 36, 48
639, 0, 2, 30, 46, 47
640, 5, 22, 33
641, 14, 33, 42
642, 0, 30, 43, 46
643, 11, 17, 35, 47
644, 0, 2, 46
645, 16, 32, 45
646, 20, 37, 39, 42
647, 14, 30, 44
648, 36, 39
649, 1, 17, 25, 37, 41, 49
650, 30, 36, 44
651, 12, 31, 36, 48
652, 24, 27, 28, 34, 39, 45, 48
653, 0, 37, 46
654, 18, 25, 44
655, 4, 9
656, 5, 22
657, 33, 42
658, 0, 26, 27, 28
659, 5
660, 2, 22, 33, 42
661, 7, 15, 49
662, 4, 9, 13, 17, 37
663, 5, 22, 35, 38, 47
664, 0, 2, 46
665, 27, 28, 39, 42
666, 12, 31, 36, 48
667, 27, 28
668, 16, 32, 45, 49
669, 21, 40
670, 5, 22, 48
671, 23, 33, 39, 42, 45
672, 1, 7, 25
673, 33, 42
674, 16, 19, 32, 38, 45
675, 7, 23, 30, 46
676, 42
677, 2, 10, 23, 42
678, 26, 30, 48
679, 7, 15, 49
680, 12, 25, 39, 48
681, 16, 17, 33, 47, 49
682, 49
683, 27, 45
684, 1, 11, 21, 42, 43
685, 8, 9, 22
686, 27, 28
687, 0, 2, 26, 43, 46
688, 16, 32, 45
689, 10, 22, 39
690, 7, 11, 14, 18, 23
691, 5, 22, 43
692, 17, 23, 29, 47
693, 1, 2, 15, 19
694, 7, 11, 37, 45
695, 5, 12, 22, 44
696, 8, 11, 22, 37
697, 20, 29
698, 7, 9, 11, 13, 37, 39, 45
699, 7, 11, 37, 45
700, 3, 36, 42, 49
701, 16, 32, 45
702, 21, 35
703, 0, 2, 46
704, 10, 18, 44
705, 6, 15, 21, 27, 28, 34, 41, 46
706, 7, 11, 37, 45
707, 16, 40
708, 37, 43
709, 7, 15, 29, 49
710, 12, 31, 36, 48
711, 5, 22, 24
712, 12, 13, 14, 32
713, 4, 5, 9, 32
714, 10, 40, 44
715, 3, 18, 35
716, 1, 13, 20, 31, 45
717, 37, 47, 48
718, 4, 9
719, 1, 19
720, 4, 12, 31
721, 10, 33
722, 14, 44
723, 5, 15, 34
724, 23, 36
725, 5, 29, 32, 35, 42
726, 3, 11, 29
727, 4, 6, 8, 10, 18, 22, 35, 37
728, 21, 24, 27
729, 33, 39
730, 27, 28
731, 6, 10, 44
732, 22
733, 0, 46
734, 16, 32, 45
735, 3, 9, 37, 42, 44
736, 19, 21, 23, 27, 30
737, 5, 19, 30
738, 5, 15, 19, 22, 23
739, 5, 22
740, 3, 18, 35
741, 17, 29, 47
742, 12, 26, 31, 36, 41, 48
743, 3, 18, 35
744, 10
745, 7, 15
746, 28, 43, 49
747, 12, 27, 28
748, 1, 19
749, 17, 21
750, 0, 18, 24, 43, 48
751, 16, 32, 45
752, 0, 11, 33
753, 3
754, 9, 15, 40
755, 12, 30, 49
756, 45
757, 23, 24, 40, 41, 43
758, 14, 40, 44
759, 15, 41, 47
760, 27, 28, 29
761, 0, 2, 23, 46
762, 7, 8, 11, 20
763, 6, 15, 22, 32
764, 5, 13, 26
765, 2, 20
766, 1, 7, 15, 48
767, 34, 45
768, 12, 24, 31, 46
769, 26, 27, 28
770, 23, 24, 40, 41
771, 20, 27, 29
772, 26
773, 27, 28
774, 1, 13, 29
775, 11, 23, 25, 36, 38, 45
776, 17, 29, 47
777, 22, 30, 39
778, 33, 42, 45, 47
779, 0, 2, 12, 39, 41, 46, 49
780, 12, 31, 36, 48
781, 12, 17, 27, 43, 45
782, 17, 47
783, 12, 31, 36, 48
784, 8, 20, 29, 32, 46
785, 10, 22, 23, 26, 36
786, 7, 20, 26, 44, 47
787, 2, 18, 27, 28, 33
788, 14, 21, 23, 24, 30, 42, 46
789, 18, 35
790, 1
791, 0, 14, 20, 44, 46
792, 5, 7, 11, 24, 27
793, 0, 18, 25, 39
794, 1, 19, 27
795, 23, 24, 40, 41, 43
796, 16
797, 0, 6, 28, 33, 35, 46, 48
798, 1, 19, 44
799, 17, 29, 47
800, 6, 31
801, 23, 24, 40, 41, 43
802, 33, 42
803, 1, 3, 19, 29, 31, 44
804, 17, 29, 47
805, 27, 31, 32, 36, 46
806, 16, 32, 45
807, 1, 19, 34, 44
808, 0, 2, 7, 18, 48
809, 14, 19
810, 7, 15, 49
811, 5, 13, 22, 30
812, 17, 29, 47
813, 13, 27, 28, 42, 48
814, 1, 5, 22
815, 4, 9
816, 7, 11, 37, 45
817, 0, 3, 7, 22, 37, 39, 40
818, 1, 19
819, 22, 26
820, 33, 37, 42
821, 4, 8, 13, 27, 28, 46
822, 27, 28, 40
823, 27, 28
824, 33, 42
825, 5, 22
826, 14, 22, 44
827, 16, 32, 45
828, 3, 16, 28, 48
829, 22, 23, 24, 39
830, 15, 26, 28, 33, 36
831, 7, 15, 49
832, 15, 22, 27, 31, 33, 40
833, 18, 35, 41, 43, 49
834, 4, 9
835, 12, 31, 36
836, 1, 19, 28, 31, 38, 44, 48
837, 4, 9, 18
838, 6, 32, 34
839, 15, 42
840, 13, 27, 28, 36
841, 7, 15, 22, 37, 43, 49
842, 7, 30, 43
843, 15, 25, 49
844, 22, 33, 41
845, 34
846, 4, 14, 21, 25, 41
847, 20, 23, 33, 42
848, 9, 13, 22, 42, 45
849, 0, 14, 22, 29, 46
850, 1, 19
851, 3, 16, 32, 45
852, 4, 9
853, 4, 9, 21, 39
854, 3, 18, 39
855, 4, 13, 32
856, 17, 29, 47
857, 12, 31, 36, 48
858, 14, 15
859, 23, 46
860, 5, 22
861, 3, 18, 35
862, 12, 22, 47, 48
863, 3, 5, 18, 35
864, 23, 24, 40, 41
865, 22
866, 8, 12, 16, 18, 29, 34, 49
867, 33, 34, 42, 44
868, 13, 23, 24, 41
869, 23, 24, 40, 41, 43
870, 13, 25
871, 5, 36, 41, 42
872, 5, 22, 31, 37, 47
873, 5, 7, 20
874, 4, 14, 16, 37, 44
875, 3, 18, 35
876, 8, 21, 29, 33, 42
877, 5, 14, 18
878, 27
879, 14, 20, 22, 24
880, 1, 3, 14, 31, 44, 45, 47
881, 29, 36, 41, 46
882, 16, 32, 45
883, 23, 24, 40, 41, 43
884, 7, 11, 19, 38, 42, 43, 47
885, 0, 27, 28, 32
886, 0, 2, 28, 41, 46
887, 23, 24, 40, 41, 43
888, 3, 18, 35
889, 14, 31
890, 8, 14, 44
891, 3, 14, 18, 22, 35
892, 1, 3, 30
893, 6, 12, 41, 44
894, 11, 30, 43
895, 7, 15, 49
896, 0, 2, 46
897, 1, 17, 38, 43
898, 25, 36
899, 7, 9, 27
900, 5, 13, 22
901, 12, 31, 36, 48
902, 26, 39, 43
903, 12, 26, 38
904, 1, 16, 20, 40
905, 23, 24, 40, 41, 43
906, 6, 28, 37, 38, 49
907, 14, 16, 17, 18, 26, 31
908, 37, 44
909, 11, 30
910, 22, 28, 41, 48
911, 12, 31, 36, 48
912, 4, 5, 7, 21
913, 3, 9, 18, 35, 41
914, 5, 27, 28, 42
915, 5, 22, 31
916, 33, 42
917, 4, 9, 15
918, 7, 11, 37, 45
919, 23, 24, 40, 41, 43
920, 40
921, 1, 8, 14, 19
922, 14, 31, 44
923, 6, 28, 33, 39
924, 0, 6, 16, 30, 39, 47
925, 12, 31, 36
926, 1, 36, 46
927, 27, 42, 44
928, 4, 9
929, 20
930, 5, 22
931, 10, 16, 26
932, 13, 36, 42
933, 12, 33, 42, 47
934, 4, 27, 28
935, 1, 19, 39
936, 1, 16, 32
937, 12, 31, 36
938, 16, 32, 41, 45
939, 16, 33, 42
940, 12, 13, 31, 35, 36, 41, 44
941, 6, 9, 19, 24, 44
942, 23, 24, 40, 41, 43
943, 5, 12, 31, 36, 48
944, 0, 2, 20, 44, 46
945, 3, 18, 35
946, 4, 12, 14, 19, 32, 48
947, 41
948, 0, 14, 44
949, 1, 10, 13, 19, 25, 26, 33, 39
950, 7, 15, 16
951, 4, 29, 46
952, 14, 20, 40, 43
953, 7, 38
954, 3, 18, 45, 47
955, 19, 29, 43
956, 9, 16
957, 0, 20, 42
958, 5, 10, 32, 33, 39, 44
959, 27, 28
960, 5, 22, 25, 29, 37, 43
961, 19
962, 4, 16, 34
963, 9, 17, 44, 45
964, 7, 15, 29
965, 7, 11, 27, 37, 39, 45, 49
966, 12, 31, 36, 48
967, 34, 49
968, 31
969, 25, 33, 42, 45
970, 16, 27, 32, 45
971, 25, 41
972, 6, 9, 15, 24, 25, 40, 45
973, 7, 8, 9, 11, 29, 37, 45
974, 21, 36
975, 5, 7, 14, 17, 22
976, 38, 40
977, 2, 7, 15, 22, 25, 33, 41
978, 27, 28
979, 16, 32, 45
980, 8, 18, 28
981, 13
982, 41
983, 27, 28, 38, 48
984, 3, 18, 35
985, 16, 20, 32, 36
986, 16, 32, 45
987, 4, 9
988, 22, 31, 39
989, 0, 2, 46
990, 34
991, 0, 2, 46
992, 0
993, 3, 6, 13
994, 3, 29, 44
995, 9, 27, 28, 45
996, 2, 10, 22, 31, 33, 46
997, 2, 6, 22, 32
998, 0, 4, 9, 30, 33
999, 3, 18, 35
1000, 15, 34, 47
package second; import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Map;
import java.util.Set; /*
* date:2015-06-10
* by wenbaoli
*
*/
public class Apriori { private float min_sup;//minimum support
private float min_conf;//minimum confidence private Map<Integer,Set<String>> TransDataBase;//transaction database
private Integer DBnum; private Map<Integer,Map<Set<String>,Float>> freqItermSet;//frequent iterm set,from 1 to k...
private Map<Set<String>,Set<Map<Set<String>,Float>>> associationRules;//the final associate rules public Apriori(Map<Integer,Set<String>> DB , float minSup, float minConf){
this.TransDataBase = DB;
this.min_conf = minConf;
this.min_sup = minSup;
this.DBnum = DB.size();
freqItermSet =new HashMap<Integer,Map<Set<String>,Float>>();
associationRules = new HashMap<Set<String>,Set<Map<Set<String>,Float>>>(); } /**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub //initial String file = "data/data.txt";
String delimeter = ","; //load data
Map<Integer,Set<String>> data = new HashMap<Integer,Set<String>>(); int num = 0;
try {
File mFile = new File(file);
FileReader fr = new FileReader(mFile);
BufferedReader br = new BufferedReader(fr);
String line; while((line=br.readLine())!= null) {
line = line.trim();
String[] str = line.split(delimeter);
// int i = Integer.parseInt(str[0]);
Set<String> set = new HashSet<String>(); for (int i = 1; i < str.length; i++) {
set.add(str[i].trim());
}
num++;
data.put(num, set); }
br.close();
} catch(IOException ex) {
ex.printStackTrace();
}
Apriori ap = new Apriori(data,0.005f,0.6f);
ap.findAllFreqItermSet();
ap.findAssociationRules();
}
public void findAllFreqItermSet(){ //找出频繁一项集 Map<Set<String>,Float> f1 = new HashMap<Set<String>,Float>();
Map<Set<String>,Integer> OneItermSet = new HashMap<Set<String>,Integer>();
Iterator<Map.Entry<Integer, Set<String>>> it = this.TransDataBase.entrySet().iterator(); while(it.hasNext()){
Map.Entry<Integer, Set<String>> entry = it.next();
Set<String> itermSet = entry.getValue();
for(String iterm:itermSet){
Set<String> key = new HashSet<String>();
key.add(iterm);
if(!OneItermSet.containsKey(key)){
OneItermSet.put(key, 1);
}else{
int value = 1 + OneItermSet.get(key);
OneItermSet.put(key, value);
}
}
}
//找出支持度大于minSup的频繁一项集
Iterator<Map.Entry<Set<String>,Integer>> iter = OneItermSet.entrySet().iterator();
while(iter.hasNext()){
Map.Entry<Set<String>,Integer> entry = iter.next();
//计算支持度
Float support = new Float(entry.getValue().toString())/new Float(this.DBnum);
if(support >= this.min_sup){
f1.put(entry.getKey(), support);
}
} System.out.println("频繁1" + "项集:" + f1);//打印频繁1-项集
System.out.println("-------------------------------------------");
this.freqItermSet.put(1, f1); //由频繁k项集得到频繁k+1项集
int k = 2;
while(true){ Set<Set<String>> candFreItermSets = this.apriori_gen(k,this.freqItermSet.get(k-1).keySet());
Map<Set<String>,Float> freqKItermSetMap = this.getFreqKItermSet(k,candFreItermSets);
if(!freqKItermSetMap.isEmpty()){
this.freqItermSet.put(k, freqKItermSetMap);
} else {
break;
}
System.out.println("频繁" + k + "项集:" + freqKItermSetMap);
System.out.println("-------------------------------------------");
k++; } }
public Map<Set<String>, Float> getFreqKItermSet(int k,
Set<Set<String>> candFreItermSets) {
Map<Set<String>,Integer> candFreqKItermSetMap = new HashMap<Set<String>,Integer>(); //扫描事物数据库
Iterator<Map.Entry<Integer, Set<String>>> it = this.TransDataBase.entrySet().iterator();
//统计支持度计数
while (it.hasNext()){
Map.Entry<Integer, Set<String>> entry = it.next();
Iterator<Set<String>> iter = candFreItermSets.iterator();
while(iter.hasNext()){
Set<String> set = iter.next();
if(entry.getValue().containsAll(set)){
if(!candFreqKItermSetMap.containsKey(set)){
candFreqKItermSetMap.put(set, 1);
}else {
int value = 1+ candFreqKItermSetMap.get(set);
candFreqKItermSetMap.put(set, value);
}
}
}
} Iterator<Map.Entry<Set<String>, Integer>> iter = candFreqKItermSetMap.entrySet().iterator();
Map<Set<String>,Float> freqKIntermSet = new HashMap<Set<String>,Float>();
while(iter.hasNext()){
Map.Entry<Set<String>, Integer> entry = iter.next();
float support = new Float(entry.getValue().toString())/this.DBnum;
if(support < this.min_sup){
iter.remove();
} else {
freqKIntermSet.put(entry.getKey(), support);
}
} return freqKIntermSet;
} public Set<Set<String>> apriori_gen(int k, Set<Set<String>> fk){
Set<Set<String>> ck = new HashSet<Set<String>>();
Iterator<Set<String>> it1 = fk.iterator();
while (it1.hasNext()) {
Set<String> itermSet1 = it1.next();
Iterator<Set<String>> it2 = fk.iterator();
while (it2.hasNext()) {
Set<String> itermSet2 = it2.next();
if(!itermSet1.equals(itermSet2)) {
//连接步
Set<String> commIterms = new HashSet<String>();
commIterms.addAll(itermSet1);
commIterms.retainAll(itermSet2);
if(commIterms.size() == (k - 2)){
Set<String> candIterms = new HashSet<String>();
candIterms.addAll(itermSet1);
candIterms.removeAll(itermSet2);
candIterms.addAll(itermSet2);
//剪枝步骤
if(!this.has_infrequent_subset(candIterms, fk)){
ck.add(candIterms);
}
}
}
}
}
System.out.println(ck.size());
return ck;
}
public boolean has_infrequent_subset(Set<String> set,Set<Set<String>> fk){
Set<Set<String>> subItermSet = new HashSet<Set<String>>();
Iterator<String> itr = set.iterator();
while(itr.hasNext()){
//深拷贝
Set<String> subItem = new HashSet<String>();
Iterator<String> it = set.iterator();
while(it.hasNext()){
subItem.add(it.next());
} //去掉一个项后为k-1子集
subItem.remove(itr.next());
subItermSet.add(subItem);
} Iterator<Set<String>> it = subItermSet.iterator();
while(it.hasNext()){
if(!fk.contains(it.next())){
return true;
}
}
return false;
}
public void findAssociationRulesTemp(){ }
public void findAssociationRules(){
Iterator<Map.Entry<Integer, Map<Set<String>,Float>>> it = this.freqItermSet.entrySet().iterator();
while (it.hasNext()) {
Map.Entry<Integer, Map<Set<String>,Float>> entry = it.next();
for (Set<String> itemSet : entry.getValue().keySet()) {
int n = itemSet.size() / 2;
for (int i = 1; i <= n; i++) {
Set<Set<String>> subset = this.getProperSubset(i,itemSet); for(Set<String> conditionSet:subset){
Set<String> conclusionSet = new HashSet<String>();
conclusionSet.addAll(itemSet);
conclusionSet.removeAll(conditionSet);
int s1 = conditionSet.size();
int s2 = conclusionSet.size(); float supF = this.freqItermSet.get(s1).get(conditionSet);
float supS = this.freqItermSet.get(s2).get(conclusionSet);
float sup = this.freqItermSet.get(s1+s2).get(itemSet); float conf1 = sup/supF;
float conf2 = sup/supS; if(conf1 >= this.min_conf){
if(this.associationRules.get(conditionSet) == null){
Set<Map<Set<String>,Float>> conclusionSetSet = new HashSet<Map<Set<String>,Float>>();
Map<Set<String>,Float> sets = new HashMap<Set<String>,Float>();
sets.put(conclusionSet, conf1);
conclusionSetSet.add(sets); this.associationRules.put(conditionSet, conclusionSetSet); } else {
Map<Set<String>,Float> sets = new HashMap<Set<String>,Float>();
sets.put(conclusionSet, conf1);
associationRules.get(conditionSet).add(sets);
}
}
if(conf2 >= this.min_conf){
if(this.associationRules.get(conditionSet) == null){
Set<Map<Set<String>,Float>> conclusionSetSet = new HashSet<Map<Set<String>,Float>>();
Map<Set<String>,Float> sets = new HashMap<Set<String>,Float>();
sets.put(conclusionSet, conf2);
conclusionSetSet.add(sets); this.associationRules.put(conditionSet, conclusionSetSet); } else {
Map<Set<String>,Float> sets = new HashMap<Set<String>,Float>();
sets.put(conclusionSet, conf2);
associationRules.get(conditionSet).add(sets);
}
}
}
} } }
System.out.println("关联规则(强规则):" + associationRules);
} private Set<Set<String>> getProperSubset(int i, Set<String> itemSet) { Set<Set<String>> subset = new HashSet<Set<String>>();
if(itemSet.size() <= 1){
return null;
}else if(itemSet.size() == 2){
for(String s: itemSet){
Set<String> set = new HashSet<String>();
set.add(s);
if(!subset.contains(s)){
subset.add(set);
} }
return subset;
}else { Iterator<String> it = itemSet.iterator();
String s = it.next();
Set<String> temp = new HashSet<String>(itemSet);
temp.remove(s);
//包含s的子集
Set<Set<String>> subset0 = new HashSet<Set<String>>();
subset0 = this.getProperSubset(i-1, temp);
subset.addAll(subset0);
//不包含s的子集
Set<Set<String>> subset1 = new HashSet<Set<String>>(); subset1 = this.getProperSubset(i, temp);
subset.addAll(subset1);
return subset; } } }
关联规则挖掘之apriori算法的更多相关文章
- HAWQ + MADlib 玩转数据挖掘之(七)——关联规则方法之Apriori算法
一.关联规则简介 关联规则挖掘的目标是发现数据项集之间的关联关系,是数据挖据中一个重要的课题.关联规则最初是针对购物篮分析(Market Basket Analysis)问题提出的.假设超市经理想更多 ...
- 关联规则推荐及Apriori算法
参考这篇文章: http://blog.csdn.net/rongyongfeikai2/article/details/40457827 这条关联规则的支持度:support = P(A并B) 这条 ...
- 推荐系统第4周--- 基于频繁模式的推荐系统和关联规则挖掘Apriori算法
数据挖掘:关联规则挖掘
- Apriori算法实现
Apriori算法原理:http://blog.csdn.net/kingzone_2008/article/details/8183768 import java.util.HashMap; imp ...
- 数据挖掘算法之-关联规则挖掘(Association Rule)
在数据挖掘的知识模式中,关联规则模式是比较重要的一种.关联规则的概念由Agrawal.Imielinski.Swami 提出,是数据中一种简单但很实用的规则.关联规则模式属于描述型模式,发现关联规则的 ...
- 数据挖掘算法之-关联规则挖掘(Association Rule)(购物篮分析)
在各种数据挖掘算法中,关联规则挖掘算是比較重要的一种,尤其是受购物篮分析的影响,关联规则被应用到非常多实际业务中,本文对关联规则挖掘做一个小的总结. 首先,和聚类算法一样,关联规则挖掘属于无监督学习方 ...
- 数据挖掘系列(4)使用weka做关联规则挖掘
前面几篇介绍了关联规则的一些基本概念和两个基本算法,但实际在商业应用中,写算法反而比较少,理解数据,把握数据,利用工具才是重要的,前面的基础篇是对算法的理解,这篇将介绍开源利用数据挖掘工具weka进行 ...
- 数据挖掘算法——Apriori算法
Apriori算法 首先,Apriori算法是关联规则挖掘中很基础也很经典的一个算法. 转载来自:链接:https://www.jianshu.com/p/26d61b83492e 所以做如下补充: ...
- Python两步实现关联规则Apriori算法,参考机器学习实战,包括频繁项集的构建以及关联规则的挖掘
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...
随机推荐
- php特殊字符过滤,html标签处理
1,magic_quotes_gpc 默认情况下,PHP 指令 magic_quotes_gpc 为 on,对所有的 GET.POST 和 COOKIE 数据自动运行 addslashes().不要 ...
- PYTHON对文件及文件夹的一些操作
python中对文件.文件夹的操作需要涉及到os模块和shutil模块. 创建文件:1) os.mknod("test.txt") 创建空文件2) open("test. ...
- item3 二维数组中的查找[剑指offer]
题目:在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序. 请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有这个整数? 8 9 思路:查找7 ...
- 使用eclipse创建java程序可执行jar包
一.eclipse中,在要打成jar包的项目名上右击,出现如下弹出框,选择“export”: 二.在接下来出现的界面中点击“jar file”,然后next: 三.在接下来出现的界面中,如图所示勾选上 ...
- 【转】SQL Server sql_variant 类型的比较
sql_variant 类型用于存储SQL SERVER中支持的各种数据类型. 为了进行 sql_variant 比较,SQL Server 数据类型层次结构顺序划分为多个数据类型系,sql_vari ...
- 黄聪:jquery mobile使用form进行post提交表单没有反应,显示空白页解决方案
jquery mobile这货会自动用Ajax方式. 所以需要在表单form标签添加data-ajax="false"这个元素. <form method="pos ...
- Redis几个认识误区(转)
此文的作者是新浪微博平台架构师杨卫华(timyang)大师,如果关注了新浪一些牛人微博的同学应该知道,timyang前段时间正在对Redis进行一些研究和测试,也分享出了不少成果.下面一篇文章相信是t ...
- DBA_Oracle数据库运维监控(案例)
2014-07-27 Created By BaoXinjian
- 获取js提交数据
无论是ajax(以XMLHttpRequest方式传输)还是表单的Get或Post方式提交(以HTTP方式传输),在asp.net中,get都是通过Request.QueryString[" ...
- Maven如何手动添加依赖的jar文件到本地Maven仓库
大家肯定遇到过想在pom文件中加入自己开发的依赖包,这些包肯定是不是在Maven仓库(http://repo1.maven.org/maven2/)的.那我们怎么将那些不存在Maven仓库中的包加入到 ...