【LeetCode】204 - Count Primes
Description:Count the number of prime numbers less than a non-negative number, n.
Hint:
Let's start with a isPrime function. To determine if a number is prime, we need to check if it is not divisible by any number less than n. The runtime complexity ofisPrime function would be O(n) and hence counting the total prime numbers up to n would be O(n2). Could we do better?
As we know the number must not be divisible by any number > n / 2, we can immediately cut the total iterations half by dividing only up to n / 2. Could we still do better?
Let's write down all of 12's factors:
2 × 6 = 12
3 × 4 = 12
4 × 3 = 12
6 × 2 = 12As you can see, calculations of 4 × 3 and 6 × 2 are not necessary. Therefore, we only need to consider factors up to √n because, if n is divisible by some number p, then n = p × q and since p ≤ q, we could derive that p ≤ √n.
Our total runtime has now improved to O(n1.5), which is slightly better. Is there a faster approach?
public int countPrimes(int n) {
int count = 0;
for (int i = 1; i < n; i++) {
if (isPrime(i)) count++;
}
return count;
} private boolean isPrime(int num) {
if (num <= 1) return false;
// Loop's ending condition is i * i <= num instead of i <= sqrt(num)
// to avoid repeatedly calling an expensive function sqrt().
for (int i = 2; i * i <= num; i++) {
if (num % i == 0) return false;
}
return true;
}The Sieve of Eratosthenes is one of the most efficient ways to find all prime numbers up to n. But don't let that name scare you, I promise that the concept is surprisingly simple.
Sieve of Eratosthenes: algorithm steps for primes below 121. "Sieve of Eratosthenes Animation" by SKopp is licensed under CC BY 2.0.We start off with a table of n numbers. Let's look at the first number, 2. We know all multiples of 2 must not be primes, so we mark them off as non-primes. Then we look at the next number, 3. Similarly, all multiples of 3 such as 3 × 2 = 6, 3 × 3 = 9, ... must not be primes, so we mark them off as well. Now we look at the next number, 4, which was already marked off. What does this tell you? Should you mark off all multiples of 4 as well?
4 is not a prime because it is divisible by 2, which means all multiples of 4 must also be divisible by 2 and were already marked off. So we can skip 4 immediately and go to the next number, 5. Now, all multiples of 5 such as 5 × 2 = 10, 5 × 3 = 15, 5 × 4 = 20, 5 × 5 = 25, ... can be marked off. There is a slight optimization here, we do not need to start from 5 × 2 = 10. Where should we start marking off?
In fact, we can mark off multiples of 5 starting at 5 × 5 = 25, because 5 × 2 = 10 was already marked off by multiple of 2, similarly 5 × 3 = 15 was already marked off by multiple of 3. Therefore, if the current number is p, we can always mark off multiples of p starting at p2, then in increments of p: p2 + p, p2 + 2p, ... Now what should be the terminating loop condition?
It is easy to say that the terminating loop condition is p < n, which is certainly correct but not efficient. Do you still remember Hint #3?
Yes, the terminating loop condition can be p < √n, as all non-primes ≥ √n must have already been marked off. When the loop terminates, all the numbers in the table that are non-marked are prime.
class Solution {
public: int countPrimes(int n) {
if(n<=)return ;
int count=;
vector<bool> isPrime(n,true); for(int i=;i<n;i++){
if(isPrime[i]){
count++;
for(long long j=(long long)i*i;j<n;j+=i) //两个longlong必不可少,否则会运行时错误,当i很大时,i*i超出int范围
isPrime[(int)j]=false;
}
}
return count;
} };
【LeetCode】204 - Count Primes的更多相关文章
- 【LeetCode】 204. Count Primes 解题报告(Python & C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 素数筛法 参考资料 日期 [LeetCode] 题目 ...
- 【刷题-LeetCode】204. Count Primes
Count Primes Count the number of prime numbers less than a non-negative number, *n*. Example: Input: ...
- 【LeetCode】222. Count Complete Tree Nodes 解题报告(Python)
[LeetCode]222. Count Complete Tree Nodes 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个 ...
- 【leetcode❤python】 204. Count Primes
#-*- coding: UTF-8 -*- #Hint1:#数字i,i的倍数一定不是质数,因此去掉i的倍数,例如5,5*1,5*2,5*3,5*4,5*5都不是质数,应该去掉#5*1,5*2,5*3 ...
- 【LeetCode】730. Count Different Palindromic Subsequences 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 记忆化搜索 动态规划 日期 题目地址:https:/ ...
- 【LeetCode】696. Count Binary Substrings 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 方法一:暴力解法(TLE) 方法二:连续子串计算 日 ...
- 【LeetCode】357. Count Numbers with Unique Digits 解题报告(Python & C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...
- 【LeetCode】38 - Count and Say
The count-and-say sequence is the sequence of integers beginning as follows:1, 11, 21, 1211, 111221, ...
- 【Leetcode】357. Count Numbers with Unique Digits
题目描述: Given a non-negative integer n, count all numbers with unique digits, x, where 0 ≤ x < 10n. ...
随机推荐
- J2ee 巴巴网站制作(二)
导入spring jar包:
- Android端通过HttpURLConnection上传文件到服务器
Android端通过HttpURLConnection上传文件到服务器 一:实现原理 最近在做Android客户端的应用开发,涉及到要把图片上传到后台服务器中,自己选择了做Spring3 MVC HT ...
- BroadcastService的测试用例
程序运行起来之后,需要用多个telnet客户端来进行测试 连接的命令为conn deviceNumber 广播命令为broa message 需要注意的是:示例代码有bug, broadcastDic ...
- R语言屏幕输出
cat("the total number is:",3+5,"\n") print(x, ...) ?print?cat?format ?write
- [NYIST15]括号匹配(二)(区间dp)
题目链接:http://acm.nyist.edu.cn/JudgeOnline/problem.php?pid=15 经典区间dp,首先枚举区间的大小和该区间的左边界,这时右边界也可计算出来.首先初 ...
- [转]深入hibernate的三种状态
学过hibernate的人都可能都知道hibernate有三种状态,transient(瞬时状态),persistent(持久化状态)以及detached(离线状态),大家伙也许也知道这三者之间的区别 ...
- 警惕rapidxml的陷阱:添加节点时,请保证变量的生命周期
http://www.cnblogs.com/chutianyao/p/3246592.html 项目中要使用xml打包.解析协议,HQ指定了使用rapidxml--号称是最快的xml解析器. 功能很 ...
- Android 第三方应用接入微信平台(1)
关键字:微信开放平台 Android第三方应用接入微信 微信平台开放后倒是挺火的,许多第三方应用都想试下接入微信这个平台, 毕竟可以利用微信建立起来的关系链来拓展自己的应用还是挺不错的,可 以节约 ...
- UVa 1149 (贪心) Bin Packing
首先对物品按重量从小到大排序排序. 因为每个背包最多装两个物品,所以直觉上是最轻的和最重的放一起最节省空间. 考虑最轻的物品i和最重的物品j,如果ij可以放在一个包里那就放在一起. 否则的话,j只能自 ...
- LA 3695 Distant Galaxy
给出n个点的坐标(坐标均为正数),求最多有多少点能同在一个矩形的边界上. 题解里是构造了这样的几个数组,图中表示的很明白了. 首先枚举两条水平线,然后left[i]表示竖线i左边位于水平线上的点,on ...