Description:Count the number of prime numbers less than a non-negative number, n.

Hint:

    1. Let's start with a isPrime function. To determine if a number is prime, we need to check if it is not divisible by any number less than n. The runtime complexity ofisPrime function would be O(n) and hence counting the total prime numbers up to n would be O(n2). Could we do better?

    2. As we know the number must not be divisible by any number > n / 2, we can immediately cut the total iterations half by dividing only up to n / 2. Could we still do better?

    3. Let's write down all of 12's factors:

      2 × 6 = 12
      3 × 4 = 12
      4 × 3 = 12
      6 × 2 = 12

      As you can see, calculations of 4 × 3 and 6 × 2 are not necessary. Therefore, we only need to consider factors up to √n because, if n is divisible by some number p, then n = p × q and since p ≤ q, we could derive that p ≤ √n.

      Our total runtime has now improved to O(n1.5), which is slightly better. Is there a faster approach?

      public int countPrimes(int n) {
      int count = 0;
      for (int i = 1; i < n; i++) {
      if (isPrime(i)) count++;
      }
      return count;
      } private boolean isPrime(int num) {
      if (num <= 1) return false;
      // Loop's ending condition is i * i <= num instead of i <= sqrt(num)
      // to avoid repeatedly calling an expensive function sqrt().
      for (int i = 2; i * i <= num; i++) {
      if (num % i == 0) return false;
      }
      return true;
      }
    4. The Sieve of Eratosthenes is one of the most efficient ways to find all prime numbers up to n. But don't let that name scare you, I promise that the concept is surprisingly simple.


      Sieve of Eratosthenes: algorithm steps for primes below 121. "Sieve of Eratosthenes Animation" by SKopp is licensed under CC BY 2.0.

      We start off with a table of n numbers. Let's look at the first number, 2. We know all multiples of 2 must not be primes, so we mark them off as non-primes. Then we look at the next number, 3. Similarly, all multiples of 3 such as 3 × 2 = 6, 3 × 3 = 9, ... must not be primes, so we mark them off as well. Now we look at the next number, 4, which was already marked off. What does this tell you? Should you mark off all multiples of 4 as well?

    5. 4 is not a prime because it is divisible by 2, which means all multiples of 4 must also be divisible by 2 and were already marked off. So we can skip 4 immediately and go to the next number, 5. Now, all multiples of 5 such as 5 × 2 = 10, 5 × 3 = 15, 5 × 4 = 20, 5 × 5 = 25, ... can be marked off. There is a slight optimization here, we do not need to start from 5 × 2 = 10. Where should we start marking off?

    6. In fact, we can mark off multiples of 5 starting at 5 × 5 = 25, because 5 × 2 = 10 was already marked off by multiple of 2, similarly 5 × 3 = 15 was already marked off by multiple of 3. Therefore, if the current number is p, we can always mark off multiples of p starting at p2, then in increments of pp2 + pp2 + 2p, ... Now what should be the terminating loop condition?

    7. It is easy to say that the terminating loop condition is p < n, which is certainly correct but not efficient. Do you still remember Hint #3?

    8. Yes, the terminating loop condition can be p < √n, as all non-primes ≥ √n must have already been marked off. When the loop terminates, all the numbers in the table that are non-marked are prime.

 class Solution {
public: int countPrimes(int n) {
if(n<=)return ;
int count=;
vector<bool> isPrime(n,true); for(int i=;i<n;i++){
if(isPrime[i]){
count++;
for(long long j=(long long)i*i;j<n;j+=i) //两个longlong必不可少,否则会运行时错误,当i很大时,i*i超出int范围
isPrime[(int)j]=false;
}
}
return count;
} };

【LeetCode】204 - Count Primes的更多相关文章

  1. 【LeetCode】 204. Count Primes 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 素数筛法 参考资料 日期 [LeetCode] 题目 ...

  2. 【刷题-LeetCode】204. Count Primes

    Count Primes Count the number of prime numbers less than a non-negative number, *n*. Example: Input: ...

  3. 【LeetCode】222. Count Complete Tree Nodes 解题报告(Python)

    [LeetCode]222. Count Complete Tree Nodes 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个 ...

  4. 【leetcode❤python】 204. Count Primes

    #-*- coding: UTF-8 -*- #Hint1:#数字i,i的倍数一定不是质数,因此去掉i的倍数,例如5,5*1,5*2,5*3,5*4,5*5都不是质数,应该去掉#5*1,5*2,5*3 ...

  5. 【LeetCode】730. Count Different Palindromic Subsequences 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 记忆化搜索 动态规划 日期 题目地址:https:/ ...

  6. 【LeetCode】696. Count Binary Substrings 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 方法一:暴力解法(TLE) 方法二:连续子串计算 日 ...

  7. 【LeetCode】357. Count Numbers with Unique Digits 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...

  8. 【LeetCode】38 - Count and Say

    The count-and-say sequence is the sequence of integers beginning as follows:1, 11, 21, 1211, 111221, ...

  9. 【Leetcode】357. Count Numbers with Unique Digits

    题目描述: Given a non-negative integer n, count all numbers with unique digits, x, where 0 ≤ x < 10n. ...

随机推荐

  1. 第一次做的struts2与spring整合

    参考:http://www.cnblogs.com/S-E-P/archive/2012/01/18/2325253.html 这篇文章说的关键就是“除了导入Struts2和Spring的核心库之外, ...

  2. 关于 PHP 7 你必须知道的五件事

    1.今年的计划表已出.PHP 7 时间表 RFC 投票一直通过, PHP 7 将在2015年10月发布.尽管有些延迟,但我们还是很高兴它在今年内发布.PHP 7 详细时间表由此查看. 2.PHP 要上 ...

  3. 在windows系统上安装VMware Workstation虚拟机,然后在虚拟机VMware Workstation上安装linux系统,在linux系统安装xshell的服务端,在windows系统上安装xshell。用windows系统上的xshell连接到linux

    第一步:安装xshell: 去百度   xshell ,然后安装一下就可以了.就是普通的软件安装,在这里不做过多的接收. 第二步:安装虚拟机VMware Workstation 百度安装,不做过介绍 ...

  4. 单调递增最长子序列(南阳理工ACM)

    描述 求一个字符串的最长递增子序列的长度如:dabdbf最长递增子序列就是abdf,长度为4 输入 第一行一个整数0<n<20,表示有n个字符串要处理随后的n行,每行有一个字符串,该字符串 ...

  5. HDFS的java操作方式

    1.RPC 1.1 RPC (remote procedure call)远程过程调用. 远程过程指的是不是同一个进程. 1.2 RPC至少有两个过程.调用方(client),被调用方(server) ...

  6. 第五讲:深入hibernate的三种状态

    学过hibernate的人都可能都知道hibernate有三种状态,transient(瞬时状态),persistent(持久化状态)以及detached(离线状态),大家伙也许也知道这三者之间的区别 ...

  7. 什么是HotSpot VM & 深入理解Java虚拟机

    参考 http://book.2cto.com/201306/25434.html 另外,这篇文章也是从一个系列中得出的: <深入理解Java虚拟机:JVM高级特性与最佳实践(第2版)> ...

  8. 【Todo】Java Queue Stack Vector ArrayList

    Java集合框架里存在Queue这个接口,之后有不同类型的队列的实现. 有Stack这个类实现堆栈,其实这个类是通过继承Vector的方式来实现的, Vector和ArrayList的实现方式差不多, ...

  9. git workflow常用命令

    git init git status git add readme.txt git add --all         Adds all new or modified files git comm ...

  10. LA 3027 Corporative Network

    这题感觉和 POJ 1988 Cube Stacking 很像,在路径压缩的同时递归出来的时候跟新distant数组 我发现我一直WA的原因是,命令结束是以字母o结束的,而不是数字0!! //#def ...