转载:https://my.oschina.net/andylucc/blog/651982

摘要

提到JAVA加锁,我们通常会想到synchronized关键字或者是Java Concurrent Util(后面简称JCU)包下面的Lock,今天就来扒一扒Lock是如何实现的,比如我们可以先提出一些问题:当我们通实例化一个ReentrantLock并且调用它的lock或unlock的时候,这其中发生了什么?如果多个线程同时对同一个锁实例进行lock或unlcok操作,这其中又发生了什么?

什么是可重入锁?

ReentrantLock是可重入锁,什么是可重入锁呢?可重入锁就是当前持有该锁的线程能够多次获取该锁,无需等待。可重入锁是如何实现的呢?这要从ReentrantLock的一个内部类Sync的父类说起,Sync的父类是AbstractQueuedSynchronizer(后面简称AQS)。

什么是AQS?

AQS是JDK1.5提供的一个基于FIFO等待队列实现的一个用于实现同步器的基础框架,这个基础框架的重要性可以这么说,JCU包里面几乎所有的有关锁、多线程并发以及线程同步器等重要组件的实现都是基于AQS这个框架。AQS的核心思想是基于volatile int state这样的一个属性同时配合Unsafe工具对其原子性的操作来实现对当前锁的状态进行修改。当state的值为0的时候,标识改Lock不被任何线程所占有。

ReentrantLock锁的架构

ReentrantLoc的架构相对简单,主要包括一个Sync的内部抽象类以及Sync抽象类的两个实现类。上面已经说过了Sync继承自AQS,他们的结构示意图如下:

上图除了AQS之外,我把AQS的父类AbstractOwnableSynchronizer(后面简称AOS)也画了进来,可以稍微提一下,AOS主要提供一个exclusiveOwnerThread属性,用于关联当前持有该所的线程。另外、Sync的两个实现类分别是NonfairSync和FairSync,由名字大概可以猜到,一个是用于实现公平锁、一个是用于实现非公平锁。那么Sync为什么要被设计成内部类呢?我们可以看看AQS主要提供了哪些protect的方法用于修改state的状态,我们发现Sync被设计成为安全的外部不可访问的内部类。ReentrantLock中所有涉及对AQS的访问都要经过Sync,其实,Sync被设计成为内部类主要是为了安全性考虑,这也是作者在AQS的comments上强调的一点。

AQS的等待队列

作为AQS的核心实现的一部分,举个例子来描述一下这个队列长什么样子,我们假设目前有三个线程Thread1、Thread2、Thread3同时去竞争锁,如果结果是Thread1获取了锁,Thread2和Thread3进入了等待队列,那么他们的样子如下:

AQS的等待队列基于一个双向链表实现的,HEAD节点不关联线程,后面两个节点分别关联Thread2和Thread3,他们将会按照先后顺序被串联在这个队列上。这个时候如果后面再有线程进来的话将会被当做队列的TAIL。

1)入队列

我们来看看,当这三个线程同时去竞争锁的时候发生了什么?

代码:

public final void acquire(int arg) {
    if (!tryAcquire(arg) &&
        acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
        selfInterrupt();
}

解读:

三个线程同时进来,他们会首先会通过CAS去修改state的状态,如果修改成功,那么竞争成功,因此这个时候三个线程只有一个CAS成功,其他两个线程失败,也就是tryAcquire返回false。

接下来,addWaiter会把将当前线程关联的EXCLUSIVE类型的节点入队列:

代码:

private Node addWaiter(Node mode) {
    Node node = new Node(Thread.currentThread(), mode);
    Node pred = tail;
    if (pred != null) {
        node.prev = pred;
        if (compareAndSetTail(pred, node)) {
            pred.next = node;
            return node;
        }
    }
    enq(node);
    return node;
}

解读:

如果队尾节点不为null,则说明队列中已经有线程在等待了,那么直接入队尾。对于我们举的例子,这边的逻辑应该是走enq,也就是开始队尾是null,其实这个时候整个队列都是null的。

代码:

private Node enq(final Node node) {
    for (;;) {
        Node t = tail;
        if (t == null) { // Must initialize
            if (compareAndSetHead(new Node()))
                tail = head;
        } else {
            node.prev = t;
            if (compareAndSetTail(t, node)) {
                t.next = node;
                return t;
            }
        }
    }
}

解读:

如果Thread2和Thread3同时进入了enq,同时t==null,则进行CAS操作对队列进行初始化,这个时候只有一个线程能够成功,然后他们继续进入循环,第二次都进入了else代码块,这个时候又要进行CAS操作,将自己放在队尾,因此这个时候又是只有一个线程成功,我们假设是Thread2成功,哈哈,Thread2开心的返回了,Thread3失落的再进行下一次的循环,最终入队列成功,返回自己。

2)并发问题

基于上面两段代码,他们是如何实现不进行加锁,当有多个线程,或者说很多很多的线程同时执行的时候,怎么能保证最终他们都能够乖乖的入队列而不会出现并发问题的呢?这也是这部分代码的经典之处,多线程竞争,热点、单点在队列尾部,多个线程都通过【CAS+死循环】这个free-lock黄金搭档来对队列进行修改,每次能够保证只有一个成功,如果失败下次重试,如果是N个线程,那么每个线程最多loop N次,最终都能够成功。

3)挂起等待线程

上面只是addWaiter的实现部分,那么节点入队列之后会继续发生什么呢?那就要看看acquireQueued是怎么实现的了,

    final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;
        if (ws == Node.SIGNAL)
            /*
             * This node has already set status asking a release
             * to signal it, so it can safely park.
             */
            return true;
        if (ws > 0) {
            /*
             * Predecessor was cancelled. Skip over predecessors and
             * indicate retry.
             */
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            /*
             * waitStatus must be 0 or PROPAGATE.  Indicate that we
             * need a signal, but don't park yet.  Caller will need to
             * retry to make sure it cannot acquire before parking.
             */
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }

我们还是以上面的例子来看看,Thread2和Thread3已经被放入队列了,进入acquireQueued之后:

  1. 对于Thread2来说,它的prev指向HEAD,因此会首先再尝试获取锁一次,如果失败,则会将HEAD的waitStatus值为SIGNAL,下次循环的时候再去尝试获取锁,如果还是失败,且这个时候prev节点的waitStatus已经是SIGNAL,则这个时候线程会被通过LockSupport挂起。

  2. 对于Thread3来说,它的prev指向Thread2,因此直接看看Thread2对应的节点的waitStatus是否为SIGNAL,如果不是则将它设置为SIGNAL,再给自己一次去看看自己有没有资格获取锁,如果Thread2还是挡在前面,且它的waitStatus是SIGNAL,则将自己挂起。

如果Thread1死死的握住锁不放,那么Thread2和Thread3现在的状态就是挂起状态啦,而且HEAD,以及Thread的waitStatus都是SIGNAL,尽管他们在整个过程中曾经数次去尝试获取锁,但是都失败了,失败了不能死循环呀,所以就被挂起了。当前状态如下:

锁释放-等待线程唤起

我们来看看当Thread1这个时候终于做完了事情,调用了unlock准备释放锁,这个时候发生了什么。

代码:

public final boolean release(int arg) {
    if (tryRelease(arg)) {
        Node h = head;
        if (h != null && h.waitStatus != 0)
            unparkSuccessor(h);
        return true;
    }
    return false;
}

解读:

首先,Thread1会修改AQS的state状态,加入之前是1,则变为0,注意这个时候对于非公平锁来说是个很好的插入机会,举个例子,如果锁是非公平锁,这个时候来了Thread4,那么这个锁将会被Thread4抢去。。。

我们继续走常规路线来分析,当Thread1修改完状态了,判断队列是否为null,以及队头的waitStatus是否为0,如果waitStatus为0,说明队列无等待线程,按照我们的例子来说,队头的waitStatus为SIGNAL=-1,因此这个时候要通知队列的等待线程,可以来拿锁啦,这也是unparkSuccessor做的事情,unparkSuccessor主要做三件事情:

  1. 将队头的waitStatus设置为0.

  2. 通过从队列尾部向队列头部移动,找到最后一个waitStatus<=0的那个节点,也就是离队头最近的没有被cancelled的那个节点,队头这个时候指向这个节点。

  3. 将这个节点唤醒,其实这个时候Thread1已经出队列了。

还记得线程在哪里挂起的么,上面说过了,在acquireQueued里面,我没有贴代码,自己去看哦。这里我们也大概能理解AQS的这个队列为什么叫FIFO队列了,因此每次唤醒仅仅唤醒队头等待线程,让队头等待线程先出。

羊群效应

这里说一下羊群效应,当有多个线程去竞争同一个锁的时候,假设锁被某个线程占用,那么如果有成千上万个线程在等待锁,有一种做法是同时唤醒这成千上万个线程去去竞争锁,这个时候就发生了羊群效应,海量的竞争必然造成资源的剧增和浪费,因此终究只能有一个线程竞争成功,其他线程还是要老老实实的回去等待。AQS的FIFO的等待队列给解决在锁竞争方面的羊群效应问题提供了一个思路:保持一个FIFO队列,队列每个节点只关心其前一个节点的状态,线程唤醒也只唤醒队头等待线程。其实这个思路已经被应用到了分布式锁的实践中,见:Zookeeper分布式锁的改进实现方案。

ReentrantLock的原理学习的更多相关文章

  1. ReentrantLock实现原理深入探究

    前言 这篇文章被归到Java基础分类中,其实真的一点都不基础.网上写ReentrantLock的使用.ReentrantLock和synchronized的区别的文章很多,研究ReentrantLoc ...

  2. IIS原理学习

    IIS 原理学习 首先声明以下内容是我在网上搜索后整理的,在此只是进行记录,以备往后查阅只用. IIS 5.x介绍 IIS 5.x一个显著的特征就是Web Server和真正的ASP.NET Appl ...

  3. (转)ReentrantLock实现原理及源码分析

    背景:ReetrantLock底层是基于AQS实现的(CAS+CHL),有公平和非公平两种区别. 这种底层机制,很有必要通过跟踪源码来进行分析. 参考 ReentrantLock实现原理及源码分析 源 ...

  4. 【Java并发编程】15、ReentrantLock实现原理深入探究

    原文已经写得非常详细了,直接把大神的文章转发过来了  https://www.cnblogs.com/xrq730/p/4979021.html 前言 这篇文章被归到Java基础分类中,其实真的一点都 ...

  5. zookkeper原理学习

    zookkeper原理学习  https://segmentfault.com/a/1190000014479433   https://www.cnblogs.com/felixzh/p/58692 ...

  6. GIS原理学习目录

    GIS原理学习目录 内容提要 本网络教程是教育部“新世纪网络课程建设工程”的实施课程.系统扼要地阐述地理信息系统的技术体系,重点突出地理信息系统的基本技术及方法. 本网络教程共分八章:第一章绪论,重点 ...

  7. 转:SVM与SVR支持向量机原理学习与思考(一)

    SVM与SVR支持向量机原理学习与思考(一) 转:http://tonysh-thu.blogspot.com/2009/07/svmsvr.html 弱弱的看了看老掉牙的支持向量机(Support ...

  8. Android自复制传播APP原理学习(翻译)

     Android自复制传播APP原理学习(翻译) 1 背景介绍 论文链接:http://arxiv.org/abs/1511.00444 项目地址:https://github.com/Tribler ...

  9. 计算机原理学习(1)-- 冯诺依曼体系和CPU工作原理

    前言 对于我们80后来说,最早接触计算机应该是在95年左右,那个时候最流行的一个词语是多媒体. 依旧记得当时在同学家看同学输入几个DOS命令就成功的打开了一个游戏,当时实在是佩服的五体投地.因为对我来 ...

随机推荐

  1. 配置hibernate根据实体类自动建表功能(转载)

    hibernate支持自动建表,在开发阶段很方便,可以保证hbm与数据库表结构的自动同步. 如何使用呢?很简单,只要在hibernate.cfg.xml里加上如下代码 Xml代码<propert ...

  2. Hibernate Annotation笔记

    (1)简介:在过去几年里,Hibernate不断发展,几乎成为Java数据库持久性的事实标准.它非常强大.灵活,而且具备了优异的性能.在本文中,我们将了解如何使用Java 5 注释来简化Hiberna ...

  3. [原创]java WEB学习笔记59:Struts2学习之路---OGNL,值栈,读取对象栈中的对象的属性,读取 Context Map 里的对象的属性,调用字段和方法,数组,list,map

    本博客的目的:①总结自己的学习过程,相当于学习笔记 ②将自己的经验分享给大家,相互学习,互相交流,不可商用 内容难免出现问题,欢迎指正,交流,探讨,可以留言,也可以通过以下方式联系. 本人互联网技术爱 ...

  4. 对ImageView.ScaleType的详解

    设置的方式有两种: 1.在layout.xml里面定义android:scaleType = "center" 2.在代码中调用imageview.setScaleType(Ima ...

  5. HDU 5002 Tree(动态树LCT)(2014 ACM/ICPC Asia Regional Anshan Online)

    Problem Description You are given a tree with N nodes which are numbered by integers 1..N. Each node ...

  6. sql server 查询性能最差的sql语句

    SELECT TOP 10 TEXT AS 'SQL Statement' ,last_execution_time AS 'Last Execution Time' ,(total_logical_ ...

  7. 夺命雷公狗ThinkPHP项目之----企业网站23之网站前台二级分类的跳转(URL跳转到列表页或产品页)

    我们现在开始做实现我们的二级菜单如何跳转到指定的列表页或者产品也呢?? 我们分享下数据库情况: 我们的数据库里提前给我们预留了一个cate_type的字段,那么我们可以让这个字段进行判断,从而遍历出指 ...

  8. MySql的Delete、Truncate、Drop分析

    MySql的Delete.Truncate.Drop分析 相同点: truncate 和不带 where 子句的 delete,以及 drop 都会删除表内的数据 不同点 1. truncate 和 ...

  9. oracle增删改查

    =======================批量删除,只留前十条数据. delete from THIRD_PARTY_MERCHANT a where a.rowid in ( select ro ...

  10. php原子操作,文件锁flock,数据库事务

    php原子操作,文件锁flock,数据库事务 php没有继承posix标准支持的unix锁,只封装了一个linux系统调用flock(信号量也能做成锁),按理也是可以使用锁机制的,虽然效率低一点.ph ...