引言

对于一个大型的互联网应用,海量数据的存储和访问成为了系统设计的瓶颈问题,对于系统的稳定性和扩展性造成了极大的问题。通过数据切分来提高网站性能,横向扩展数据层已经成为架构研发人员首选的方式。

•水平切分数据库:可以降低单台机器的负载,同时最大限度的降低了宕机造成的损失;

•负载均衡策略:可以降低单台机器的访问负载,降低宕机的可能性;

•集群方案:解决了数据库宕机带来的单点数据库不能访问的问题;

•读写分离策略:最大限度了提高了应用中读取数据的速度和并发量;

问题描述

1、单个表数据量越大,读写锁,插入操作重新建立索引效率越低。

2、单个库数据量太大(一个数据库数据量到1T-2T就是极限)

3、单个数据库服务器压力过大

4、读写速度遇到瓶颈(并发量几百)

解决问题的思路:根据自己的实际情况,当单表过大的时候进行分表,数据库过大的时候进行分库,高并发的情况考虑读写分离和集群。

数据拆分的方式有:分区、分表、分库

•分区

•就是把一张表的数据分成N个区块,在逻辑上看最终只是一张表,但底层是由N个物理区块组成的

•分表

•就是把一张表按一定的规则分解成N个具有独立存储空间的实体表。系统读写时需要根据定义好的规则得到对应的字表明,然后操作它。

•分库

一旦分表,一个库中的表会越来越多

将整个数据库比作图书馆,一张表就是一本书。当要在一本书中查找某项内容时,如果不分章节,查找的效率将会下降。而同理,在数据库中就是分区。

分区

什么时候考虑使用分区?

•一张表的查询速度已经慢到影响使用的时候。

•sql经过优化

•数据量大

•表中的数据是分段的

•对数据的操作往往只涉及一部分数据,而不是所有的数据

分区解决的问题

•主要可以提升查询效率

分表

什么时候考虑分表?

•一张表的查询速度已经慢到影响使用的时候。

•sql经过优化

•数据量大

•当频繁插入或者联合查询时,速度变慢

分表解决的问题

•分表后,单表的并发能力提高了,磁盘I/O性能也提高了,写操作效率提高了

•查询一次的时间短了

•数据分布在不同的文件,磁盘I/O性能提高

•读写锁影响的数据量变小

•插入数据库需要重新建立索引的数据减少

分区和分表的区别与联系

•分区和分表的目的都是减少数据库的负担,提高表的增删改查效率。

•分区只是一张表中的数据的存储位置发生改变,分表是将一张表分成多张表。

•当访问量大,且表数据比较大时,两种方式可以互相配合使用。

•当访问量不大,但表数据比较多时,可以只进行分区。

常见分区分表的规则策略(类似)

•Range(范围)

•Hash(哈希)

•按照时间拆分

•Hash之后按照分表个数取模

•在认证库中保存数据库配置,就是建立一个DB,这个DB单独保存user_id到DB的映射关系

分库

什么时候考虑使用分库?

•单台DB的存储空间不够

•随着查询量的增加单台数据库服务器已经没办法支撑

分库解决的问题

•其主要目的是为突破单节点数据库服务器的 I/O 能力限制,解决数据库扩展性问题。

垂直拆分

•将系统中不存在关联关系或者需要join的表可以放在不同的数据库不同的服务器中。

•按照业务垂直划分。比如:可以按照业务分为资金、会员、订单三个数据库。

•需要解决的问题:跨数据库的事务、jion查询等问题。

水平拆分

•例如,大部分的站点。数据都是和用户有关,那么可以根据用户,将数据按照用户水平拆分。

•按照规则划分,一般水平分库是在垂直分库之后的。比如每天处理的订单数量是海量的,可以按照一定的规则水平划分。需要解决的问题:数据路由、组装。

读写分离

•对于时效性不高的数据,可以通过读写分离缓解数据库压力。需要解决的问题:在业务上区分哪些业务上是允许一定时间延迟的,以及数据同步问题。

思路:

垂直分库-->水平分库-->读写分离

数据拆分以后面临的问题

问题

•事务的支持,分库分表,就变成了分布式事务、

分库分表后,就成了分布式事务了。如果依赖数据库本身的分布式事务管理功能去执行事务,将付出高昂的性能代价; 如果由应用程序去协助控制,形成程序逻辑上的事务,又会造成编程方面的负担。

•join时跨库,跨表的问题

•分库分表,读写分离使用了分布式,分布式为了保证强一致性,必然带来延迟,导致性能降低,系统的复杂度变高。

分库分表后表之间的关联操作将受到限制,我们无法join位于不同分库的表,也无法join分表粒度不同的表, 结果原本一次查询能够完成的业务,可能需要多次查询才能完成。 粗略的解决方法: 全局表:基础数据,所有库都拷贝一份。 字段冗余:这样有些字段就不用join去查询了。 系统层组装:分别查询出所有,然后组装起来,较复杂。

常用的解决方案:

•对于不同的方式之间没有严格的界限,特点不同,侧重点不同。需要根据实际情况,结合每种方式的特点来进行处理。

•选用第三方的数据库中间件(Atlas,Mycat,TDDL,DRDS),同时业务系统需要配合数据存储的升级。

数据存储的演进

单库单表

•单库单表是最常见的数据库设计,例如,有一张用户(user)表放在数据库db中,所有的用户都可以在db库中的user表中查到。

单库多表

•随着用户数量的增加,user表的数据量会越来越大,当数据量达到一定程度的时候对user表的查询会渐渐的变慢,从而影响整个DB的性能。如果使用mysql, 还有一个更严重的问题是,当需要添加一列的时候,mysql会锁表,期间所有的读写操作只能等待。

•可以通过某种方式将user进行水平的切分,产生两个表结构完全一样的user_0000,user_0001等表,user_0000 + user_0001 + …的数据刚好是一份完整的数据。

多库多表

随着数据量增加也许单台DB的存储空间不够,随着查询量的增加单台数据库服务器已经没办法支撑。这个时候可以再对数据库进行水平拆分。

总结

总的来说,优先考虑分区。当分区不能满足需求时,开始考虑分表,合理的分表对效率的提升会优于分区。

垂直分库-->水平分库-->读写分离

实操

1、单库多表

单库多表是对数据的水平拆分,多张表的表结构完全相同,数据按照不同的规则进行拆分,存储到对于的数据表中。

 
单库多表-1

这是我安装数据的年份进行拆分的数据表,数据存储的时候根据数据的年份存到对于的表中,我们的查询业务也都是按照年份进行,一般没有跨年份的数据查询,这样就避免了多表查询后数据的合并。

2、多库单表

完全相同的数据库,安装不同规则存储各自的数据,下面是我的spring boot多数据源配置:

#更多数据源

custom.datasource.names=jiangsu,anhui,shandong,hubei,hunan,fujian

custom.datasource.jiangsu.type=com.zaxxer.hikari.HikariDataSource

custom.datasource.jiangsu.driverClassName=com.mysql.jdbc.Driver

custom.datasource.jiangsu.url=jdbc:mysql://127.0.0.1:3306/nda_jiangsu?useUnicode=yes&characterEncoding=UTF-8

custom.datasource.jiangsu.username=root

custom.datasource.jiangsu.password=

custom.datasource.anhui.type=com.zaxxer.hikari.HikariDataSource

custom.datasource.anhui.driverClassName=com.mysql.jdbc.Driver

custom.datasource.anhui.url=jdbc:mysql://127.0.0.1:3306/nda_anhui?useUnicode=yes&characterEncoding=UTF-8

custom.datasource.anhui.username=root

custom.datasource.anhui.password=

custom.datasource.shandong.type=com.zaxxer.hikari.HikariDataSource

custom.datasource.shandong.driverClassName=com.mysql.jdbc.Driver

custom.datasource.shandong.url=jdbc:mysql://127.0.0.1:3306/nda_shandong?useUnicode=yes&characterEncoding=UTF-8

custom.datasource.shandong.username=root

custom.datasource.shandong.password=

custom.datasource.hubei.type=com.zaxxer.hikari.HikariDataSource

custom.datasource.hubei.driverClassName=com.mysql.jdbc.Driver

custom.datasource.hubei.url=jdbc:mysql://127.0.0.1:3306/nda_hubei?useUnicode=yes&characterEncoding=UTF-8

custom.datasource.hubei.username=root

custom.datasource.hubei.password=

custom.datasource.hunan.type=com.zaxxer.hikari.HikariDataSource

custom.datasource.hunan.driverClassName=com.mysql.jdbc.Driver

custom.datasource.hunan.url=jdbc:mysql://127.0.0.1:3306/nda_hunan?useUnicode=yes&characterEncoding=UTF-8

custom.datasource.hunan.username=root

custom.datasource.hunan.password=

custom.datasource.fujian.type=com.zaxxer.hikari.HikariDataSource

custom.datasource.fujian.driverClassName=com.mysql.jdbc.Driver

custom.datasource.fujian.url=jdbc:mysql://127.0.0.1:3306/nda_fujian?useUnicode=yes&characterEncoding=UTF-8

custom.datasource.fujian.username=root

custom.datasource.fujian.password=

这是按照省进行数据拆分,保证各个省的数据完整性

在相关业务操作的时候,根据用户所在的省份查询对应的数据库:

DynamicDataSourceContextHolder.setDataSourceType(provincename);

3、多库多表

在介绍多库多表的时候,给大家介绍一个轻量级分库分表工具,sharding-jdbc,这是当当网自己实现的基本JDBC的数据库多库多表解决方案。可以让你在写业务代码的时候完全按照单库单表进行,多库多表的问题有sharding-jdbc帮你解决,需要自己实现分库分表规则接口,配置分库分表规则。

pom.xml配置

 
 

实现分库规则接口

public class DemoDatabaseShardingAlgorithm implements PreciseShardingAlgorithm{ @Override

public String doSharding(Collectioncollection, PreciseShardingValue preciseShardingValue) {

for (String each : collection) {

System.out.println(each+"=="+preciseShardingValue.getValue());

if (each.endsWith(Long.parseLong(preciseShardingValue.getValue().toString()) % 2+"")) {

return each;

}

}

throw new IllegalArgumentException();

}

}

实现分表规则接口

public class DemoTableShardingAlgorithm implements PreciseShardingAlgorithm{

@Override

public String doSharding(Collectioncollection, PreciseShardingValue preciseShardingValue) {

for (String each : collection) {

System.out.println(each+"=2="+preciseShardingValue.getValue());

if (each.endsWith(Long.parseLong(preciseShardingValue.getValue().toString()) % 2+"")) {

return each;

}

}

throw new IllegalArgumentException();

}

}

调用规则

@Bean(name = "shardingDataSource")

DataSource getShardingDataSource() throws SQLException {

ShardingRuleConfiguration shardingRuleConfig;

shardingRuleConfig = new ShardingRuleConfiguration();

shardingRuleConfig.getTableRuleConfigs().add(getUserTableRuleConfiguration());

shardingRuleConfig.getBindingTableGroups().add("user_info");

shardingRuleConfig.setDefaultDatabaseShardingStrategyConfig(new StandardShardingStrategyConfiguration("user_id", DemoDatabaseShardingAlgorithm.class.getName()));

shardingRuleConfig.setDefaultTableShardingStrategyConfig(new StandardShardingStrategyConfiguration("user_id", DemoTableShardingAlgorithm.class.getName()));

return new ShardingDataSource(shardingRuleConfig.build(createDataSourceMap()));

}

这样完成以后,业务代码就可以完全按照单表就行书写,Sharding-JDBC会自动帮你实现分库分表的数据库插入,以及查询时候的多表数据合并。

Sharding-JDBC 采用在 JDBC 协议层扩展分库分表,是一个以 jar 形式提供服务的轻量级组件,其核心思路是小而美地完成最核心的事情。

Sharding-JDBC 还提供了读写分离的能力,用于减轻写库的压力。

此外,Sharding-JDBC 可以用在 JPA 场景中,如 JPA、Hibernate、Mybatis,Spring JDBC Template 等任何 Java 的 ORM 框架。

不过目前Sharding-JDBC仅支持mysql数据库

然后还有一个第三方插件mycat也可以实现分库分表的数据插入和查询,不过mycat是基于 Proxy,它复写了 MySQL 协议,将 Mycat Server 伪装成一个 MySQL 数据库,而 Sharding-JDBC 是基于 JDBC 接口的扩展,是以 jar 包的形式提供轻量级服务的。

在使用中将mycat查询启动,它自己就成为了一个虚拟数据库,而业务程序是连接的mycat的虚拟数据库的,然后mycat连接实际数据库实现数据的分库分表。

分库分表方案产品介绍
目前市面上的分库分表中间件相对较多,其中基于代理方式的有MySQL Proxy和Amoeba, 基于Hibernate框架的是Hibernate Shards,基于jdbc的有当当sharding-jdbc, 基于mybatis的类似maven插件式的有蘑菇街的蘑菇街TSharding, 通过重写spring的ibatis template类的Cobar Client。

还有一些大公司的开源产品:

mysql大数据解决方案--分表分库(0)的更多相关文章

  1. mysql大数据的分表

    在实际业务运作中,我们经常遇到一个表中数据量过大的问题,这样的话,问题就来了.如何将一个表中的数据均衡的放到多个表中? 我的建议是,新建一个表,但是只有一个自增的id字段,将其作为分表的依据.有大数据 ...

  2. 由mysql分区想到的分表分库的方案

    在分区分库分表前一定要了解分区分库分表的动机. 对实时性要求比较高的场景,使用数据库的分区分表分库. 对实时性要求不高的场景,可以考虑使用索引库(es/solr)或者大数据hadoop平台来解决(如数 ...

  3. C#.NET 大型通用信息化系统集成快速开发平台 4.1 版本 - 大数据支持分表优化

    公司的短信平台,数据量越来越大了,需要对数据进行一些优化,下面是拆分后的数据库量参考. 新开发的软件模块,必须支持分表,拆表的功能一个数据表里,不适合保存1000万以上的记录新开发的业务模块,能分表的 ...

  4. Mysql数据库进阶之(分表分库,主从分离)

    前言:数据库的优化是一个程序员的分水岭,作为小白我也得去提前学习这方面的数据的 (一)  三范式和逆范式 听起范式这个迟非常专业我来举个简单的栗子: 第一范式就是:  把能够关联的每条数据都拆分成一个 ...

  5. MySQL 大数据量修改表结构问题

    前言: 在系统正常运作一定时间后,随着市场.产品汪的需求不断变更,比较大的一些表结构面临不得不增加字段的方式来扩充满足业务需求:  而 MySQL 在体量上了千万.亿级别数据的时候,Alter Tab ...

  6. 重新学习Mysql数据13:Mysql主从复制,读写分离,分表分库策略与实践

    一.MySQL扩展具体的实现方式 随着业务规模的不断扩大,需要选择合适的方案去应对数据规模的增长,以应对逐渐增长的访问压力和数据量. 关于数据库的扩展主要包括:业务拆分.主从复制.读写分离.数据库分库 ...

  7. [NewLife.XCode]分表分库(百亿级大数据存储)

    NewLife.XCode是一个有15年历史的开源数据中间件,支持netcore/net45/net40,由新生命团队(2002~2019)开发完成并维护至今,以下简称XCode. 整个系列教程会大量 ...

  8. efcore在Saas系统下多租户零脚本分表分库读写分离解决方案

    efcore在Saas系统下多租户零脚本分表分库读写分离解决方案 ## 介绍 本文ShardinfCore版本x.6.0.20+ 本期主角: - [`ShardingCore`](https://gi ...

  9. 总结下Mysql分表分库的策略及应用

    上月前面试某公司,对于mysql分表的思路,当时简要的说了下hash算法分表,以及discuz分表的思路,但是对于新增数据自增id存放的设计思想回答的不是很好(笔试+面试整个过程算是OK过了,因与个人 ...

随机推荐

  1. 石子合并/能量项链【区间dp】

    题目链接:http://www.51mxd.cn/problem.php-pid=737.htm 题目大意:给出n个石子堆以及这n个石子堆中石子数目,每次操作合并两个相邻的石子堆,代价为两个石子堆数目 ...

  2. GitHub项目管理维护实用教程

    GitHub项目维护教程   1)注册GitHub账户并登陆: 2)在Windows cmd(或Ubuntu中的terminal)中cd到自己的工作目录,将仓库clone下来: 命令: git clo ...

  3. rownum伪行号-排行榜-分页

    rownum伪行号-排行榜-分页 1.rownum 是oracle数据库特有的一个特性,它针对每一个查询(包括子查询),都会生成一个rownum用于对该次查询进行编号 2.每个rownum只针对当前s ...

  4. XSSFWorkbook对象 进行zip打包时 用write资源流自动关闭处理办法

    XSSFWorkbook对象的write方法内会将传入的资源流自动关闭 导致下载excel失败 错误代码 OutputStream out = response.getOutputStream(); ...

  5. HDU 3461 思维+并查集

    Code Lock 题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=3461 Problem Description A lock you use has ...

  6. LeetCode 答案(python)18-24

    18.四个数之和 给定一个包含 n 个整数的数组 nums 和一个目标值 target,判断 nums 中是否存在四个元素 a,b,c 和 d ,使得 a + b + c + d 的值与 target ...

  7. MyBatis学习存档(3)——mapper.xml映射文件

    MyBatis 真正的强大在于映射语句,专注于SQL,功能强大,SQL映射的配置却是相当简单 所以我们来看看映射文件的具体结构 一.xml节点结构 mapper为根节点 - namespace命名空间 ...

  8. 第十章 MIZ702 ZYNQ制作UBOOT固化程序

    10.0难度系数★☆☆☆☆☆☆ 10.1是什么是固化 我们前几章将的程序都是通过JTAG先下载bit流文件,再下载elf文件,之后点击Run As来运行的程序.JTAG的方法是通过TCL脚本来初始化P ...

  9. 第九章 MIZ702 ZYNQ片上ADC的使用

      9.0难度系数★☆☆☆☆☆☆ 9.1实验概述 这次借助zynq的内嵌的XADC来采集zynq内部的一些参数: •VCCINT:内部PL核心电压 •VCCAUX:辅助PL电压 •VREFP:XADC ...

  10. varnish 子程序流程

    VCL中主要动作: pass:当一个请求被pass后,这个请求将通过varnish转发到后端服务器,该请求不会被缓存,后续的请求仍然通过Varnish处理.pass可以放在vcl_recv 和vcl_ ...