朴素贝叶斯分类器模型(Naive Bayles)

Model basic introduction:

  朴素贝叶斯分类器是通过数学家贝叶斯的贝叶斯理论构造的,下面先简单介绍贝叶斯的几个公式:

先验概率: P(X) or P(Y)

条件概率: P(X|Y)=P(XY)\P(Y)  => P(XY)=P(X|Y)*P(Y)   ①

后验概率: P(Y|X)=P(YX)\P(X)  结合①式可以推导=> P(Y|X)=P(X|Y)*P(Y)\P(X)

朴素贝叶斯分类器:它可以计算数据的每一个维度 被分到某一个类的概率。倘若一个数据有n个维度的特征,用X={x1,x2,x3,x4,x5,….,xn}来表示,类别有K个,用Y={y1,y2,y3,y4,y5,…,yk}来表示。那么X被分到i类的概率就可以用一个公式来表示:

P(Y=y(i) | X) = P(X | Y=y(i) ) *P( Y=y(i) ) \ P(X)

朴素贝叶斯的目的就是找到向量X属于最大概率的类别,所以 argmax P(Y|X)=argmaxP(x1,x2,x3,x4…|Y)*P(Y)   因为朴素贝叶斯的每个特征假设都是独立的,所以将每个特征进行单独计算。

利用SVC分类器对文本进行分类:

对文本单词进行统计,统计出所有单词(去除重复的),然后将这些单词作为特征向量,将行数作为维度。

①   :分割数据集

②   :使用特征向量化库对文本进行 特征向量转化(将文本转化成多维度的特征向量)

③   :初始化SVC模型,用分割好的训练数据,训练模型,使模型get到参数

④   :用训练好的模型,预测X_test

⑤   :用svc自带的评估来评估模型,用classification_report对预测结果(分类器性能)评估

from sklearn.datasets import fetch_20newsgroups
news = fetch_20newsgroups(subset='all') from string import punctuation
table = str.maketrans(' ',' ',punctuation)
st = [w.translate(table) for w in news.data]
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(news.data,news.target,test_size=0.25,random_state=33,stratify=news.target)
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer,TfidfTransformer
from sklearn.metrics import classification_report #运用tfidf来特征向量化
tfidf_filter_vec=TfidfVectorizer(max_df=0.045,binary=True,stop_words='english',ngram_range=(1,2),smooth_idf=True,sublinear_tf=True)
X_tfidf_filter_train = tfidf_filter_vec.fit_transform(X_train)
X_tfidf_filter_test = tfidf_filter_vec.transform(X_test) #svc
from sklearn.svm import LinearSVC
svc=LinearSVC()
svc.fit(X_tfidf_filter_train,y_train)
svc_pred = svc.predict(X_tfidf_filter_test)
print('svc',svc.score(X_tfidf_filter_test,y_test))

SVC评估结果为: 0.941213921901528

  

机器学习朴素贝叶斯 SVC对新闻文本进行分类的更多相关文章

  1. 朴素贝叶斯算法——实现新闻分类(Sklearn实现)

    1.朴素贝叶斯实现新闻分类的步骤 (1)提供文本文件,即数据集下载 (2)准备数据 将数据集划分为训练集和测试集:使用jieba模块进行分词,词频统计,停用词过滤,文本特征提取,将文本数据向量化 停用 ...

  2. Python之机器学习-朴素贝叶斯(垃圾邮件分类)

    目录 朴素贝叶斯(垃圾邮件分类) 邮箱训练集下载地址 模块导入 文本预处理 遍历邮件 训练模型 测试模型 朴素贝叶斯(垃圾邮件分类) 邮箱训练集下载地址 邮箱训练集可以加我微信:nickchen121 ...

  3. spark 机器学习 朴素贝叶斯 实现(二)

    已知10月份10-22日网球场地,会员打球情况通过朴素贝叶斯算法,预测23,24号是否适合打网球.结果,日期,天气 温度 风速结果(0否,1是)天气(0晴天,1阴天,2下雨)温度(0热,1舒适,2冷) ...

  4. spark 机器学习 朴素贝叶斯 原理(一)

    朴素贝叶斯算法仍然是流行的挖掘算法之一,该算法是有监督的学习算法,解决的是分类问题,如客户是否流失.是否值得投资.信用等级评定等多分类问题.该算法的优点在于简单易懂.学习效率高.在某些领域的分类问题中 ...

  5. 机器学习---朴素贝叶斯与逻辑回归的区别(Machine Learning Naive Bayes Logistic Regression Difference)

    朴素贝叶斯与逻辑回归的区别: 朴素贝叶斯 逻辑回归 生成模型(Generative model) 判别模型(Discriminative model) 对特征x和目标y的联合分布P(x,y)建模,使用 ...

  6. 什么是机器学习的分类算法?【K-近邻算法(KNN)、交叉验证、朴素贝叶斯算法、决策树、随机森林】

    1.K-近邻算法(KNN) 1.1 定义 (KNN,K-NearestNeighbor) 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类 ...

  7. 机器学习:python中如何使用朴素贝叶斯算法

    这里再重复一下标题为什么是"使用"而不是"实现": 首先,专业人士提供的算法比我们自己写的算法无论是效率还是正确率上都要高. 其次,对于数学不好的人来说,为了实 ...

  8. AI学习---分类算法[K-近邻 + 朴素贝叶斯 + 决策树 + 随机森林 ]

    分类算法:对目标值进行分类的算法    1.sklearn转换器(特征工程)和预估器(机器学习)    2.KNN算法(根据邻居确定类别 + 欧氏距离 + k的确定),时间复杂度高,适合小数据    ...

  9. 朴素贝叶斯算法下的情感分析——C#编程实现

    这篇文章做了什么 朴素贝叶斯算法是机器学习中非常重要的分类算法,用途十分广泛,如垃圾邮件处理等.而情感分析(Sentiment Analysis)是自然语言处理(Natural Language Pr ...

随机推荐

  1. JavaScript-->基础类型和引用类型的区别

    先了解一下数组的基础知识:附代码(数组属于引用类型的对象) <!DOCTYPE html> <html lang="en"> <head> &l ...

  2. 重拾MVC——第一天:数据库连接与SqlDbHelper

    这个 SqlDbHelper 是我参考网上的和以前用过的 SqlDbHelper 自己写的一个非常简单的东西,主要是记录自己的学习情况 首先在Web.config中配置数据库连接字符串: <co ...

  3. linux 文件操作与目录操作

    文件操作 使用命令 命令格式: 命令 [选项] [参数] [] 表示可选的 示例: ls -a /etc 常识命令 ls:查看指定目录的内容,不指定目录时查看当前工作目录 选项 说明 -a 显示所有文 ...

  4. SpringMVC的工作原理(转)

    SpringMVC的工作原理图: SpringMVC流程 1.  用户发送请求至前端控制器DispatcherServlet. 2.  DispatcherServlet收到请求调用HandlerMa ...

  5. JavaSpring【五、AOP基础】

    概念: AOP--面向切面编程,通过预编译/动态代理实现程序功能的统一维护 主要功能是:日志.性能统计.安全控制.事务处理.异常处理 实现方式 预编译--AspectJ 动态代理--SpringAOP ...

  6. svn中日志不展示解决方法记录

    一,问题:点击svn查看日志时不显示.筛选时间显示为1970 1,猜想可能没有查看日志权限 2,查看linux 下svn版本库 confg 下三个配制文件 authz ,passwd ,svnserv ...

  7. 为什么Microsoft Office 2016安装时不能自选安装组件和安装路径?

    使用特别版本的安装镜像文件 SW_DVD5_Office_Professional_Plus_2016_64Bit_ChnSimp_MLF_X20-42426.iso,请自行搜索和下载 文件: SW_ ...

  8. (转)为什么收到三个重复的ACK意味着发生拥塞?

    三次重复的ACK,可能是丢包引起的,丢包可能是网络拥塞造成的,也可能是信号失真造成的. 三次重复的ACK,也有可能是乱序引起的,而乱序和网络拥塞没有直接关系. 如果就写这两行,感觉什么都没写,接下来的 ...

  9. iotop命令详解

    iotop是top和iostat程序的混合体,能够显示系统中所有运行进程并将进程根据I/O统计信息排序. 这个软件使用了Linux内核的一些新特性,所以需要2.6.20或者更新的内核. 一般默认情况下 ...

  10. RAID 10是将RAID 1和RAID 0结合

    RAID 10是将RAID 1和RAID 0结合,它的优点是同时拥有RAID 0的超凡速度和RAID 1的数据高可靠性,但是CPU占用率同样也更高,而且磁盘的利用率比较低.由于利用了RAID 0极高的 ...