Magic boy Bi Luo with his excited tree

Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1058    Accepted Submission(s): 308

Problem Description
Bi Luo is a magic boy, he also has a migic tree, the tree has N nodes , in each node , there is a treasure, it's value is V[i], and for each edge, there is a cost C[i], which means every time you pass the edge i , you need to pay C[i].

You may attention that every V[i] can be taken only once, but for some C[i] , you may cost severial times.

Now, Bi Luo define ans[i] as the most value can Bi Luo gets if Bi Luo starts at node i.

Bi Luo is also an excited boy, now he wants to know every ans[i], can you help him?

 
Input
First line is a positive integer T(T≤104) , represents there are T test cases.

Four each test:

The first line contain an integer N(N≤105).

The next line contains N integers V[i], which means the treasure’s value of node i(1≤V[i]≤104).

For the next N−1 lines, each contains three integers u,v,c , which means node u and node v are connected by an edge, it's cost is c(1≤c≤104).

You can assume that the sum of N will not exceed 106.

 
Output
For the i-th test case , first output Case #i: in a single line , then output N lines , for the i-th line , output ans[i] in a single line.
 
Sample Input
1
5
4 1 7 7 7
1 2 6
1 3 1
2 4 8
3 5 2
 
Sample Output
Case #1:
15
10
14
9
15
 
Author
UESTC
 
Source
题意:给你一棵树,每个结点有个宝藏价值w,每次只能拿一次宝藏,每次经过路径需要花费val值,路径可以来回经过,同时可以多次花费val值,求从i点出发,能拿到的最大权值ans【i】
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <iostream>
#include <cmath>
#include <map>
#include <stack>
#include <queue>
#include <vector>
#include <bitset>
#include <set>
#define MM(a,b) memset(a,b,sizeof(a));
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
#define CT continue
#define SC scanf
const int N=1e5+10;
int val[N],dp[N][6],ans[N];
struct edge{
int v,c;
};
vector<edge> G[N]; void dfs1(int u,int f)
{
dp[u][1]=dp[u][0]=val[u];
for(int i=0;i<G[u].size();i++){
int v=G[u][i].v,c=G[u][i].c;
if(v==f) CT;
dfs1(v,u);
int cur=dp[u][0]-c+dp[v][1],
ano1=dp[u][1]+max(dp[v][0]-2*c,0),
ano2=dp[u][2]+max(dp[v][0]-2*c,0);
if(cur>ano1){
dp[u][4]=v;
dp[u][1]=cur;
dp[u][2]=ano1;
}
else if(cur>ano2) {
dp[u][1]=ano1;
dp[u][2]=cur;
}
else{
dp[u][1]=ano1;
dp[u][2]=ano2;
}
dp[u][0]+=max(0,dp[v][0]-2*c);
}
} void dfs2(int u,int f,int fback,int fnback)
{
ans[u]=max(dp[u][0]+fnback,dp[u][1]+fback);
for(int i=0;i<G[u].size();i++){
int v=G[u][i].v,c=G[u][i].c;
if(v==f) CT;
int uback=fback+dp[u][0]-max(0,dp[v][0]-2*c)-2*c,unback;
if(v==dp[u][4]){
unback=max(dp[u][0]-max(0,dp[v][0]-2*c)+fnback,
fback+dp[u][2]-max(0,dp[v][0]-2*c))-c;
}
else{
unback=max(fnback+dp[u][0]-max(0,dp[v][0]-2*c),
fback+dp[u][1]-max(0,dp[v][0]-2*c))-c;
}
dfs2(v,u,max(0,uback),max(0,unback));
}
} int main()
{
int cas,kk=0;
SC("%d",&cas);
while(cas--){
int n;SC("%d",&n);
MM(dp,0);
for(int i=1;i<=n;i++){
SC("%d",&val[i]);
G[i].clear();
}
for(int i=1;i<=n-1;i++){
int u,v,c;
SC("%d%d%d",&u,&v,&c);
G[u].push_back((edge){v,c});
G[v].push_back((edge){u,c});
}
dfs1(1,-1);
dfs2(1,-1,0,0);
printf("Case #%d:\n",++kk);
for(int i=1;i<=n;i++) printf("%d\n",ans[i]);
}
return 0;
}

 题解:

hdu 5834 Magic boy Bi Luo with his excited tree 树形dp+转移的更多相关文章

  1. hdu-5834 Magic boy Bi Luo with his excited tree(树形dp)

    题目链接: Magic boy Bi Luo with his excited tree Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: ...

  2. HDU 5834 Magic boy Bi Luo with his excited tree(树形dp)

    http://acm.hdu.edu.cn/showproblem.php?pid=5834 题意: 一棵树上每个节点有一个价值$Vi$,每个节点只能获得一次,每走一次一条边要花费$Ci$,问从各个节 ...

  3. 【树形动规】HDU 5834 Magic boy Bi Luo with his excited tree

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5834 题目大意: 一棵N个点的有根树,每个节点有价值ci,每条树边有费用di,节点的值只能取一次,边 ...

  4. 动态规划(树形DP):HDU 5834 Magic boy Bi Luo with his excited tree

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA8UAAAJbCAIAAABCS6G8AAAgAElEQVR4nOy9fXQcxZ0uXH/hc8i5N+

  5. HDU 5834 Magic boy Bi Luo with his excited tree

    树形dp. 先dfs一次处理子树上的最优解,记录一下回到这个点和不回到这个点的最优解. 然后从上到下可以推出所有答案.细节较多,很容易写错. #pragma comment(linker, " ...

  6. HDU5834 Magic boy Bi Luo with his excited tree (树形DP)

    题意:一棵树有点权和边权 从每个点出发 走过一条边要花费边权同时可以获得点权 边走几次就算几次花费 点权最多算一次 问每个点能获得的最大价值 题解:好吧 这才叫树形DP入门题 dp[i][0]表示从i ...

  7. HDU5834Magic boy Bi Luo with his excited tree 树形dp

    分析:典型的两遍dfs树形dp,先统计到子树的,再统计从祖先来的,dp[i][0]代表从从子树回来的最大值,dp[i][1]代表不回来,id[i]记录从i开始到哪不回来 吐槽:赛场上想到了状态,但是不 ...

  8. 2016中国大学生程序设计竞赛 - 网络选拔赛 C. Magic boy Bi Luo with his excited tree

    Magic boy Bi Luo with his excited tree Problem Description Bi Luo is a magic boy, he also has a migi ...

  9. 树形DP CCPC网络赛 HDU5834 Magic boy Bi Luo with his excited tree

    // 树形DP CCPC网络赛 HDU5834 Magic boy Bi Luo with his excited tree // 题意:n个点的树,每个节点有权值为正,只能用一次,每条边有负权,可以 ...

随机推荐

  1. Oulipo POJ - 3461(kmp,求重叠匹配个数)

    Problem Description The French author Georges Perec (1936–1982) once wrote a book, La disparition, w ...

  2. 基于docker的mongodb安装以及PHP使用

    说明:用docker基于单服务器,虚拟多个服务器的方案, 以下是两个config服务器,两个分片,以及每个分片有一个副本的方案 这里关于给mongodb设置远程密码的问题,我采取了用两个compser ...

  3. PHP接收前端传值各种情况整理

    PHP接收前端传值各种情况整理 服务端代码: header('Access-Control-Allow-Origin:*'); var_dump($_POST); exit; 情况 1) 传null ...

  4. 消息服务百科全书——为什么使用MQ

    为什么要使用MQ?有如下几个好处: 解耦 在项目启动之初来预测将来项目会碰到什么需求,是极其困难的.消息系统在处理过程中间插入了一个隐含的.基于数据的接口层,两边的处理过程都要实现这一接口.这允许你独 ...

  5. C++反汇编第三讲,反汇编中识别继承关系,父类,子类,成员对象

    讲解目录: 1.各类在内存中的表现形式   备注: 主要复习开发知识,和反汇编没有关系,但是是理解反汇编的前提.     2.子类继承父类 2.1 子类中有虚函数,父类中有虚函数 : 都有的情况下   ...

  6. python 画图像训练结果的loss图

    得到每个epoch的loss和predict精度后,就可以愉快地画图直观地看出训练结果和收敛性了. # coding:utf-8 import matplotlib.pyplot as plt dat ...

  7. maven 私服 nexus 安装

    1.去官方下载他的免费版,人民称为oss版(这一步自行百度去官网解决),官网:https://www.sonatype.com/ 2.下载好后,解压是两个文件夹: 3.配置环境变量:  4.安装生成w ...

  8. spark2.0的10个特性介绍

    1. Spark 2.0 ! 还记得我们的第七篇 Spark 博文里吗?里面我用三点来总结 spark dataframe 的好处: 当时是主要介绍 spark 里的 dataframe,今天是想总结 ...

  9. 【php设计模式】适配器模式

    适配器模式(对象适配器.类适配器): 将一个类的接口转换成客户希望的另一个接口.适配器模式让那些接口不兼容的类可以一起工作. 在适配器模式定义中所提及的接口是指广义的接口,它可以表示一个方法或者方法的 ...

  10. 安卓开发之HttpURLConnection类和Handler类的使用

    package com.lidaochen.test; import java.io.ByteArrayOutputStream; import java.io.InputStream; public ...