图论 tarjan缩点+最短路 的一道题

  • tarjan求强连通分量(为以后缩点打下良好的基础)

(如果不会tarjan的请点击这儿)

你需要的东西:
(1)、dfn[],表示这个点在dfs时是第几个被搜到的。
(2)、low[],表示这个点以及其子孙节点连的所有点中dfn最小的值
(3)、stack[],表示当前所有可能能构成是强连通分量的点。
(4)、vis[],表示一个点是否在stack中。
(5)、color[],记录每一个点强连通分量的编号。
(6)、deep,记录dfs树的深度
inline void tarjan(int now)
{
dfn[now]=++deep;
low[now]=deep;
vis[now]=1;
st.push(now);
for(int i=0;i<ver[now].size();i++)
{
int x=ver[now][i];
if(!dfn[x])
{
tarjan(x);
low[now]=min(low[now],low[x]);
}
else
{
if(vis[x])
low[now]=min(low[now],low[x]);
}
}
if(dfn[now]==low[now])
{
color[now]=++sum;
vis[now]=0;
while(st.top()!=now)
{
color[st.top()]=sum;
vis[st.top()]=0;
st.pop();
}
st.pop();
}
}
  • 缩点(去除图中的环)
//重点:这里建新图是依托强连通分量的编号来建的
for(int i=1;i<=n;i++)
{
for(int j=0;j<ver[i].size();j++)
{
int x=ver[i][j];
if(color[i]!=color[x])//如果不是属于同一个强连通分量中,那么就合并
{
g[color[i]].push_back(color[x]);
//千万不能写成g[i].push_back(x);坑死我了
}
}
}
//这一部分代码还可以适当优化...(想一想)
  • 对于点权与酒馆的一些处理(方便求最短路)
for(int i=1;i<=n;i++)
{
ww[color[i]]+=w[i];//将这个强连通分量中所有的点权全部加起来
if(tf[i])tf[color[i]]=1;//只要这个强连通分量中有一个结点有酒馆,那么就设定为有酒馆
}
  • 求最短路模板(然而实际是最长路)
//模板不做解释
inline void spfa()
{
d[color[s]]=ww[color[s]];
queue<int>q;
q.push(color[s]);
while(q.size())
{
int now=q.front();
q.pop();
for(int i=0;i<g[now].size();i++)
{
int x=g[now][i];
if(d[now]+ww[x]>d[x])
{
d[x]=d[now]+ww[x];
q.push(x);
}
}
}
}

所以...

在所有有酒馆的节点中选一个最大值输出就好了

for(int i=1;i<=sum;i++)
{
//cout<<d[i]<<" ";
if(tf[i])ans=max(ans,d[i]);
}

完整代码

#include<bits/stdc++.h>
using namespace std;
const int MAXN=500000+10;
int n,m;
vector<int>ver[MAXN];
vector<int>g[MAXN];
int w[MAXN],ww[MAXN];
bool tf[MAXN];
int s,p,ans=0;
int dfn[MAXN],color[MAXN],low[MAXN];
int deep,sum;
bool vis[MAXN];
int d[MAXN];
stack<int>st;
inline int read()
{
int tot=0;
char c=getchar();
while(c<'0'||c>'9')
c=getchar();
while(c>='0'&&c<='9')
{
tot=tot*10+c-'0';
c=getchar();
}
return tot;
}
inline void tarjan(int now)
{
dfn[now]=++deep;
low[now]=deep;
vis[now]=1;
st.push(now);
for(int i=0;i<ver[now].size();i++)
{
int x=ver[now][i];
if(!dfn[x])
{
tarjan(x);
low[now]=min(low[now],low[x]);
}
else
{
if(vis[x])
low[now]=min(low[now],low[x]);
}
}
if(dfn[now]==low[now])
{
color[now]=++sum;
vis[now]=0;
while(st.top()!=now)
{
color[st.top()]=sum;
vis[st.top()]=0;
st.pop();
}
st.pop();
}
}
inline void spfa()
{
d[color[s]]=ww[color[s]];
queue<int>q;
q.push(color[s]);
while(q.size())
{
int now=q.front();
q.pop();
for(int i=0;i<g[now].size();i++)
{
int x=g[now][i];
if(d[now]+ww[x]>d[x])
{
d[x]=d[now]+ww[x];
q.push(x);
}
}
}
}
int main()
{
//freopen("testdata.in","r",stdin);
n=read();m=read();
for(int i=1;i<=m;i++)
{
int x=read(),y=read();
ver[x].push_back(y);
}
for(int i=1;i<=n;i++)
w[i]=read();
s=read();p=read();
for(int i=1;i<=p;i++)
{
int x=read();
tf[x]=1;
}
for(int i=1;i<=n;i++)
{
if(!dfn[i])
tarjan(i);
}
/*cout<<endl;
for(int i=1;i<=n;i++)
cout<<color[i]<<" ";
cout<<endl;*/
for(int i=1;i<=n;i++)
{
for(int j=0;j<ver[i].size();j++)
{
int x=ver[i][j];
if(color[i]!=color[x])
{
//cout<<i<<" "<<x<<" "<<color[i]<<" "<<color[x]<<endl;
g[color[i]].push_back(color[x]);
}
}
}
for(int i=1;i<=n;i++)
{
ww[color[i]]+=w[i];
if(tf[i])tf[color[i]]=1;
}
/*cout<<color[s]<<endl;
cout<<endl;
for(int i=1;i<=sum;i++)
{
for(int j=0;j<g[i].size();j++)cout<<i<<" "<<g[i][j]<<"\n";
}
cout<<endl;
for(int i=1;i<=sum;i++)
cout<<ww[i]<<" ";cout<<endl;
for(int i=1;i<=sum;i++)
cout<<tf[i]<<" ";cout<<endl;
cout<<ww[color[s]]<<endl;*/
spfa();
for(int i=1;i<=sum;i++)
{
//cout<<d[i]<<" ";
if(tf[i])ans=max(ans,d[i]);
}
//cout<<endl;
cout<<ans<<endl;
return 0;
}

洛谷 题解 P3627 【[APIO2009]抢掠计划】的更多相关文章

  1. P3627 [APIO2009]抢掠计划

    P3627 [APIO2009]抢掠计划 Tarjan缩点+最短(最长)路 显然的缩点...... 在缩点时,顺便维护每个强连通分量的总权值 缩完点按照惯例建个新图 然后跑一遍spfa最长路,枚举每个 ...

  2. 【题解】洛谷P3627 [APIO2009]抢掠计划(缩点+SPFA)

    洛谷P3627:https://www.luogu.org/problemnew/show/P3627 思路 由于有强连通分量 所以我们可以想到先把整个图缩点 缩点完之后再建一次图 把点权改为边权 并 ...

  3. 洛谷 P3627 [APIO2009]抢掠计划 题解

    Analysis 建图+强连通分量+SPFA求最长路 但要保证最后到达的点中包含酒馆 虽然思路并不难想,但要求的代码能力很高. #include<iostream> #include< ...

  4. 洛谷 P3627 [APIO2009]抢掠计划 Tarjan缩点+Spfa求最长路

    题目地址:https://www.luogu.com.cn/problem/P3627 第一次寒假训练的结测题,思路本身不难,但对于我这个码力蒟蒻来说实现难度不小-考试时肛了将近两个半小时才刚肛出来. ...

  5. [洛谷P3627][APIO2009]抢掠计划

    题目大意:给你一张$n(n\leqslant5\times10^5)$个点$m(m\leqslant5\times10^5)$条边的有向图,有点权,给你起点和一些可能的终点.问从起点开始,到任意一个终 ...

  6. 洛谷 P3627 [APIO2009]抢掠计划

    这题一看就是缩点,但是缩完点怎么办呢?首先我们把所有的包含酒吧的缩点找出来,打上标记,然后建立一张新图, 每个缩点上的点权就是他所包含的所有点的点权和.但是建图的时候要注意,每一对缩点之间可能有多条边 ...

  7. 【luogu P3627 [APIO2009]抢掠计划】 题解

    题目链接:https://www.luogu.org/problemnew/show/P3627 把点权转化到边权上去. #include <stack> #include <que ...

  8. 题解 P3627 【[APIO2009]抢掠计划】

    咕了四个小时整整一晚上 P3627 [APIO2009] 抢掠计划(https://www.luogu.org/problemnew/show/P3627) 不难看出答案即为该有向图的最长链长度(允许 ...

  9. APIO2009 抢掠计划 Tarjan DAG-DP

    APIO2009 抢掠计划 Tarjan spfa/DAG-DP 题面 一道\(Tarjan\)缩点水题.因为可以反复经过节点,所以把一个联通快中的所有路口看做一个整体,缩点后直接跑\(spfa\)或 ...

随机推荐

  1. Allure自动化测试报告之修改allure测试报告logo

    1.安装allure 2.进入 /usr/local/Cellar/allure/2.10.0/libexec/config 3.在allure.yml添加 - custom-logo-plugin ...

  2. Spring Cloud Gateway(三):网关处理器

    1.Spring Cloud Gateway 源码解析概述 API网关作为后端服务的统一入口,可提供请求路由.协议转换.安全认证.服务鉴权.流量控制.日志监控等服务.那么当请求到达网关时,网关都做了哪 ...

  3. (转)hadoop 常规错误问题(一)

    转至:http://www.freeoa.net/osuport/db/my-hbase-usage-problem-sets_2979.html 本文是我在使用Hbase的过程碰到的一些问题和相应的 ...

  4. [Shell]Powershell反弹shell

    原作者:Cream 文章出处: 贝塔安全实验室 0x01 Powershell反弹shell Windows PowerShell 是一种命令行外壳程序和脚本环境,使命令行用户和脚本编写者可以利用 . ...

  5. BZOJ1211树的计数

    裸的prufer结论. 给个小链接prufer序列 ,里面有一个性质4就是本题答案,严谨证明可以上网找一找,如果从多组组合角度理解也可以. 剩下的就是特判,n==1时,du==0,1个,du!=0,废 ...

  6. Radix Heap ---Dijkstra算法的优化 BY Gremount

    Radix Heap 算法是在Dijkstra的Dial实现的基础上,通过减少对桶的使用,来优化算法的时间复杂度: Dial 时间复杂度是O(m+nC)     -------C是最长的链路 Radi ...

  7. fdisk交互

    fdisk交互 命令 说明 指令 a 设置可引导标记 toggle a bootable flag b 编辑bsd磁盘标签 edit bsd disklabel c 设置DOS操作系统兼容标记 tog ...

  8. Alpha冲刺(4/4)

    队名:福大帮 组长博客链接:https://www.cnblogs.com/mhq-mhq/p/11913386.html 作业博客 :https://edu.cnblogs.com/campus/f ...

  9. DMA详解

    1.DMA由来DMA(Direct Memory Access,直接存储器访问).在DMA出现之前,CPU与外设之间的数据传送方式有程序传送方式.中断传送方式.CPU是通过系统总线与其他部件连接并进行 ...

  10. 二维背包---P1855 榨取kkksc03

    P1855 榨取kkksc03 题解 二维背包板子题 f[ i ][ j ] 前 n 个物品,花费金钱不超过 i ,花费时间不超过 j 的最大价值 如果每个物品只能选一次,那么就相当于在01背包上多加 ...