CodeForce 222C Reducing Fractions
To confuse the opponents, the Galactic Empire represents fractions in an unusual format. The fractions are represented as two sets of integers. The product of numbers from the first set gives the fraction numerator, the product of numbers from the second set gives the fraction denominator. However, it turned out that the programs that work with fractions in this representations aren't complete, they lack supporting the operation of reducing fractions. Implement this operation and the Empire won't forget you.
The first input line contains two space-separated integers n, m (1 ≤ n, m ≤ 105) that show how many numbers the first set (the numerator) and the second set (the denominator) contain, correspondingly.
The second line contains n space-separated integers: a1, a2, ..., an (1 ≤ ai ≤ 107) — the numbers that are multiplied to produce the numerator.
The third line contains m space-separated integers: b1, b2, ..., bm (1 ≤ bi ≤ 107) — the numbers that are multiplied to produce the denominator.
Output
Print the answer to the problem in the form, similar to the form of the input data. The number of values in the sets you print nout, mout must satisfy the inequality 1 ≤ nout, mout ≤ 105, and the actual values in the sets aout, i and bout, i must satisfy the inequality 1 ≤ aout, i, bout, i ≤ 107.
Separate the values in the lines by spaces. The printed fraction must be reduced, that is, there mustn't be such integer x (x > 1), that the numerator and the denominator of the printed fraction are divisible by x. If there are several matching answers, print any of them.
Examples
3 2
100 5 2
50 10
2 3
2 1
1 1 1
4 3
2 5 10 20
100 1 3
1 1
20
3
Note
In the first test sample the numerator equals 1000, the denominator equals 500. If we reduce fraction 1000/500 by the greatest common divisor of the numerator and the denominator (by 500), we obtain fraction 2/1.
In the second test sample the numerator equals 2000, the denominator equals 300. If we reduce fraction 2000/300 by the greatest common divisor of the numerator and the denominator (by 100),
OJ-ID:
CodeForce 222C
author:
Caution_X
date of submission:
20191012
tags:
分解质因数
description modelling:
给出分子分母,求通分。(分子分母以一系列数的乘积给出)
major steps to solve it:
1.分别把分子分母分解质因数
2.通分
warnings:
分解质因数后有两种处理方案:
①:比较分解后分子分母的质因数,然后消去分子分母中相同的质因数(导致(溢出)WA和TLE)
②:用原来分子的乘积和分母的质因数相消,再用原来分母的乘积和分子的质因数相消
采用方案②
AC code:
#include<cstdio>
#include<cstring>
using namespace std;
int prime[]={};
int a[],b[];
int ap[],bp[];
void check(int *x,int *y,int len)//分解因子
{
for(int i=;i<len;++i)
for(int j=x[i];j>;j/=prime[j])
y[prime[j]]++;//因子数+1
}
void print(int *x,int *y,int len)
{
int cnt;
for(int i=;i<len;++i)
{
cnt=;
for(int j=x[i];j>;j/=prime[j])
if(y[prime[j]]>) y[prime[j]]--;
else cnt*=prime[j];
if(i==) printf("%d",cnt);
else printf(" %d",cnt);
}
puts("");
}
int main()
{
int n,m;
prime[]=;
for(int i=;i<=;++i)
if(!prime[i])
{
prime[i]=i;
for(int j=*i;j<=;j+=i)
prime[j]=i;
}
scanf("%d%d",&n,&m);
for(int i=;i<n;++i) scanf("%d",a+i);
for(int i=;i<m;++i) scanf("%d",b+i);
check(a,ap,n);check(b,bp,m);
printf("%d %d\n",n,m);
print(a,bp,n);print(b,ap,m);
return ;
}
CodeForce 222C Reducing Fractions的更多相关文章
- CF思维联系–CodeForces - 222 C Reducing Fractions(数学+有技巧的枚举)
ACM思维题训练集合 To confuse the opponents, the Galactic Empire represents fractions in an unusual format. ...
- CF222C Reducing Fractions
题目大意: 给出两个集合,第一个集合数的乘积是分子,第二个集合的数的乘积是分母,要求够造一个同样的集合,但是得到的分数是最简分数. 分析: 寻找思路并不复杂,对两个集合的每个数进行质因数分解,然后统计 ...
- ACM思维题训练 Section A
题目地址: 选题为入门的Codeforce div2/div1的C题和D题. 题解: A:CF思维联系–CodeForces -214C (拓扑排序+思维+贪心) B:CF–思维练习-- CodeFo ...
- codeforces 练习
codeforces 627 D. Preorder Test 二分 + 树dp 做logn次树dp codeforces 578D.LCS Again 给出一个字符串str,长度n<=10^6 ...
- Codeforces Round #137 (Div. 2)
A. Shooshuns and Sequence 显然\([k,n]\)之间所有数均要相同,为了求最少步数,即最多模拟\(n\)次操作即可. B. Cosmic Tables 映射\(x_i,y_i ...
- CodeForce 359C Prime Number
Prime Number CodeForces - 359C Simon has a prime number x and an array of non-negative integers a1, ...
- Codeforces Round #384 (Div. 2) C. Vladik and fractions(构造题)
传送门 Description Vladik and Chloe decided to determine who of them is better at math. Vladik claimed ...
- Codeforces Round #232 (Div. 2) D. On Sum of Fractions
D. On Sum of Fractions Let's assume that v(n) is the largest prime number, that does not exceed n; u ...
- 一天一经典Reducing the Dimensionality of Data with Neural Networks [Science2006]
别看本文没有几页纸,本着把经典的文多读几遍的想法,把它彩印出来看,没想到效果很好,比在屏幕上看着舒服.若用蓝色的笔圈出重点,这篇文章中几乎要全蓝.字字珠玑. Reducing the Dimensio ...
随机推荐
- .net core入门-项目启动时报错:HTTP Error 502.5 - ANCM Out-Of-Process Startup Failure
在打开Core的项目首页时,页面有时候会出现:HTTP Error 502.5 - ANCM Out-Of-Process Startup Failure的错误,但是这里面看不出任何错误详情,这个时候 ...
- 20个Python代码段,你需要立刻学会,好用到哭!
Python是一种非BS编程语言.设计简单和易读性是它广受欢迎的两大原因.正如Python的宗旨:美丽胜于丑陋,显式胜于隐式. 记住一些帮助提高编码设计的常用小诀窍是有用的.在必要时刻,这些小诀窍能够 ...
- 【面试突击】-RabbitMQ常见面试题(三)
1.什么是RabbitMQ?为什么使用RabbitMQ? 答:RabbitMQ是一款开源的,Erlang编写的,基于AMQP协议的,消息中间件: 可以用它来:解耦.异步.削峰. 2.RabbitMQ有 ...
- leaflet-webpack 入门开发系列二加载不同在线地图切换显示(附源码下载)
前言 leaflet-webpack 入门开发系列环境知识点了解: node 安装包下载webpack 打包管理工具需要依赖 node 环境,所以 node 安装包必须安装,上面链接是官网下载地址 w ...
- 认识Metasploit框架
Metasploit基础 认识Metaspliot框架 Metaspliot(MSF)渗透测试框架,提供众多的接口.选项.变量.模块以供渗透工作人员使用它完成一系列的渗透攻击. 渗透攻击(Expl ...
- IOS系统在Safari安装ipa文件
配置点击下载的地址 itms-services://?action=download-manifest&url= "plist文件路径"plist文件配置 IIS网站配置要 ...
- [b0034] python 归纳 (十九)_线程同步_条件变量
代码: # -*- coding: utf-8 -*- """ 学习线程同步,使用条件变量 逻辑: 生产消费者模型 一个有3个大小的产品库,一个生产者负责生产,一个消费者 ...
- JavaScript—数据可视化(ECharts)
Echarts具有丰富的图表,可以说是数据可视化的神器: 1.下载Echarts 官网下载地址:https://echarts.baidu.com/index.html 2.Echarts引用案例—柱 ...
- 攻防世界pwn之新手区
涉及的工具有 Ubuntu 16.04 pwntools IDA gdb-peda 1.get_shell 连接就给flag,可以直接用nc连接,然后输入ls查看里面的目录,发现有名字叫flag文件, ...
- 线程休眠sleep
一.sleep的作用 sleep() 定义在Thread.java中.sleep() 的作用是让当前线程休眠,即当前线程会从“运行状态”进入到“休眠(阻塞)状态”.sleep()会指定休眠时间,线程休 ...