02-13 Softmax回归
更新、更全的《机器学习》的更新网站,更有python、go、数据结构与算法、爬虫、人工智能教学等着你:https://www.cnblogs.com/nickchen121/p/11686958.html
Softmax回归
Softmax回归属于多分类\(c_1,c_2,\ldots,c_k\)模型,它通过估计某个样本属于\(k\)个类别的各自的概率达到多分类的目的。它是逻辑回归的一般形式,即当\(k=2\)的时候退化为逻辑回归。
一、Softmax回归详解
1.1 让步比
由于softmax回归更多的是逻辑回归的多分类形式,此处只给出softmax的定义及公式。
让步比可以理解成有利于某一特定事件的概率,可以定义为
\]
在已知二分类问题的情况下每个分类的概率分别为\(\hat{y_i}\)和\(1-\hat{y_i}\),可以定义logit函数,即让步比的对数形式(log-odds)为
\log{it}(\hat{y_i}) & = \log{\frac{p(y=1|x,\omega)}{p(y=0|x,\omega)}} \\
& = \log{\frac{\hat{y_i}}{1-\hat{y_i}}} \\
& = \log{\frac{{\frac{1}{1+e^{-\omega^Tx}}}}{{\frac{-\omega^Tx}{1+e^{-\omega^Tx}}}}} \\
& = \omega^Tx
\end{align}
\]
其中\(\log{it}(p)\)函数等于事件发生的概率除以不发生的概率取对数,即表示特征值和对数概率之间的线性关系。
1.2 不同类之间的概率分布
现在假设有一个\(k\)元分类模型,即样本的输出值为\(c_1,c_2,\ldots,c_k\),对于某一个实例预测为\(c_i\)样本的概率总和为\(1\),即
\]
该\(k\)元分类模型依据让步比的对数形式可以得到
& \ln{\frac{p(y=1|x,\omega)}{p(y=k|x,\omega)}} = {\omega_1^T}x \\
& \ln{\frac{p(y=2|x,\omega)}{p(y=k|x,\omega)}} = {\omega_2^T}x \\
& \cdots \\
& \ln{\frac{p(y=k-1|x,\omega)}{p(y=k|x,\omega)}} = {\omega_{k-1}^T}x \\
& \ln{\frac{p(y=k|x,\omega)}{p(y=k|x,\omega)}} = {\omega_{k}^T}x = 0 \\
\end{align}
\]
通过对上述公式化简可得
& {\frac{p(y=1|x,\omega)}{p(y=k|x,\omega)}} = e^{{\omega_1^T}x} \\
& {\frac{p(y=2|x,\omega)}{p(y=k|x,\omega)}} = e^{{\omega_2^T}x} \\
& \cdots \\
& {\frac{p(y=k-1|x,\omega)}{p(y=k|x,\omega)}} = e^{{\omega_{k-1}^T}x} \\
\end{align}
\]
e^{{\omega_1^T}x}+e^{{\omega_1^T}x}+\cdots+e^{{\omega_{k-1}^T}x} & = \sum_{i=1}^{k-1} e^{{\omega_i^T}x} \\
& = {\frac{p(y=1|x,\omega)}{p(y=k|x,\omega)}} + {\frac{p(y=2|x,\omega)}{p(y=k|x,\omega)}} + \cdots + {\frac{p(y=k-1|x,\omega)}{p(y=k|x,\omega)}} \\
& = {\frac{p(y=1|x,\omega)+p(y=2|x,\omega)+\cdots+p(y=k-1|x,\omega)}{p(y=k|x,\omega)}} \\
& = {\frac{1-p(y=k|x,\omega)}{p(y=k|x,\omega)}} \\
\end{align}
\]
既得\(p(y=k|x,\omega)={\frac{1}{1+\sum_{i=1}^{k-1} e^{{\omega_i^T}x}}}\)
通过\(p(y=k|x,\omega)\)即可推出\(p(y=j|x,\omega)={\frac{e^{{\omega_j^T}x}}{1+\sum_{t=1}^{k-1} e^{{\omega_t^T}x}}} \quad j=1,2,\ldots,k-1\),因此可以得到\(k\)元分类模型的\(k\)个类的概率分布为
\begin{cases}
{\frac{e^{{\omega_j^T}x}}{1+\sum_{t=1}^{k-1} e^{{\omega_t^T}x}}} \quad j=1,2,\ldots,k-1 \quad if类别为1,2,\ldots,k-1 \\
{\frac{1}{1+\sum_{i=1}^{k-1} e^{{\omega_i^T}x}}} \quad if类别为k \\
\end{cases}
\]
1.3 目标函数
上一节基于\({\omega_k^T}x=0\)计算出每个分类的概率,然而现实中往往\({\omega_k^T}x\neq0\),可以使用上一节的推导过程假设\({\omega_k^T}x\neq0\)则可以推导出\(k\)元分类模型的\(k\)个类的概率分布为
\]
通过上述\(k\)个类别的概率分布可得似然函数
L(\omega) & = \prod_{i=1}^m \prod_{k=1}^k p(c=k|x_i,\omega)^{{y_i}_k} \\
& = \prod_{i=1}^m \prod_{k=1}^k ({\frac{e^{({\omega_k^T}x_i)}}{\sum_{t=1}^k e^{{\omega_t^T}x_i}}})^{y_ik}
\end{align}
\]
通过似然函数即可得对数似然函数即目标函数(注:该目标函数与交叉熵损失函数的形式一致,二元逻辑回归可以理解为交叉熵损失函数两个类变量的特殊形式,Softmax回归可以理解成交叉熵损失函数的多个类变量的特殊形式,交叉熵为
J_m(\omega) & = \log{L(\omega)} \\
& = \sum_{i=1}^m\sum_{k=1}^k {y_i}_k ({\omega_k^T}x_i - \log\sum_{t=1}^k e^{({\omega_t^T}x_i)})
\end{align}
\]
1.4 目标函数最大化
由于Softmax回归和逻辑回归都可以使用梯度上升法使得目标函数最大化,并且方式一样,因此此处只给出目标函数对参数的偏导。
\]
二、Softmax回归优缺点
2.1 优点
- 基于模型本身可以处理多分类问题
2.2 缺点
- 计算极其复杂
\(2^2\)
02-13 Softmax回归的更多相关文章
- TensorFlow实现Softmax回归(模型存储与加载)
# -*- coding: utf-8 -*- """ Created on Thu Oct 18 18:02:26 2018 @author: zhen "& ...
- Logistic回归(逻辑回归)和softmax回归
一.Logistic回归 Logistic回归(Logistic Regression,简称LR)是一种常用的处理二类分类问题的模型. 在二类分类问题中,把因变量y可能属于的两个类分别称为负类和正类, ...
- 机器学习之softmax回归笔记
本次笔记绝大部分转自https://www.cnblogs.com/Luv-GEM/p/10674719.html softmax回归 Logistic回归是用来解决二类分类问题的,如果要解决的问题是 ...
- 《动手学深度学习》系列笔记—— 1.2 Softmax回归与分类模型
目录 softmax的基本概念 交叉熵损失函数 模型训练和预测 获取Fashion-MNIST训练集和读取数据 get dataset softmax从零开始的实现 获取训练集数据和测试集数据 模型参 ...
- 机器学习——softmax回归
softmax回归 前面介绍了线性回归模型适用于输出为连续值的情景.在另一类情景中,模型输出可以是一个像图像类别这样的离散值.对于这样的离散值预测问题,我们可以使用诸如 softmax 回归在内的分类 ...
- 【深度学习】softmax回归——原理、one-hot编码、结构和运算、交叉熵损失
1. softmax回归是分类问题 回归(Regression)是用于预测某个值为"多少"的问题,如房屋的价格.患者住院的天数等. 分类(Classification)不是问&qu ...
- Softmax回归
Reference: http://ufldl.stanford.edu/wiki/index.php/Softmax_regression http://deeplearning.net/tutor ...
- Softmax回归(Softmax Regression)
转载请注明出处:http://www.cnblogs.com/BYRans/ 多分类问题 在一个多分类问题中,因变量y有k个取值,即.例如在邮件分类问题中,我们要把邮件分为垃圾邮件.个人邮件.工作邮件 ...
- DeepLearning之路(二)SoftMax回归
Softmax回归 1. softmax回归模型 softmax回归模型是logistic回归模型在多分类问题上的扩展(logistic回归解决的是二分类问题). 对于训练集,有. 对于给定的测试 ...
- Machine Learning 学习笔记 (3) —— 泊松回归与Softmax回归
本系列文章允许转载,转载请保留全文! [请先阅读][说明&总目录]http://www.cnblogs.com/tbcaaa8/p/4415055.html 1. 泊松回归 (Poisson ...
随机推荐
- java.util.Timer简介
Timer是用于管理在后台执行的延迟任务或周期性任务,其中的任务使用java.util.TimerTask表示.任务的执行方式有两种: 按固定速率执行:即scheduleAtFixedRate的两个重 ...
- mysql之explain详解
mysql之explain详解 mysql之explain各个字段的详细意思: 字段 含义 select_type 分为简单(simple)和复杂 type all : 即全表扫描 index : 按 ...
- 基础知识:什么是SNMP
简单网络管理协议(SNMP) 是专门设计用于在 IP 网络管理网络节点(服务器.工作站.路由器.交换机及HUBS等)的一种标准协议,它是一种应用层协议. SNMP 使网络管理员能够管理网络效能,发现并 ...
- OPENLDAP 服务搭建和后期管理
LDAP 服务 本文首发:https://www.cnblogs.com/somata/p/OPENLDAPServerConfigAndPostManagement.html 本文主要在debian ...
- 使用ECMAScript 6 模块封装代码
JavaScript 用"共享一切"的方法加载代码,这是该语言中最容易出错且最容易让人感到困惑的地方.其他语言使用诸如包这样的概念来定义代码作用域,但在 ECMAScript 6 ...
- Redis相关安装TCL
安装相关命令 wget http://downloads.sourceforge.net/tcl/tcl8.6.1-src.tar.gzsudo tar -xzvf tcl8.6.1-src.tar. ...
- Hadoop学习笔记—20.网站日志分析项目案例
1.1 项目来源 本次要实践的数据日志来源于国内某技术学习论坛,该论坛由某培训机构主办,汇聚了众多技术学习者,每天都有人发帖.回帖,如图1所示. 图1 项目来源网站-技术学习论坛 本次实践的目的就在于 ...
- Rocksdb基本用法
rocksdb 用法 rocksdb 介绍 RocksDB是使用C++编写的嵌入式kv存储引擎,其键值均允许使用二进制流.由Facebook基于levelDB开发, 提供向后兼容的levelDB AP ...
- 按插入顺序排序的map
LinkedHashMap HashMap是无序的,HashMap在put的时候是根据key的hashcode进行hash然后放入对应的地方.所以在按照一定顺序put进HashMap中,然后遍历出Ha ...
- ActiveMQ JMX使用
一.说明 ActiveMQ使用过程中,可以使用自带的控制台进行相关的操作以及查看,但是当队列数相当多的时候,在查询以及整体的监控上,就可能相当的不便.所以可通过JMX的方式,进行MQ中队列相关指标的以 ...