1. 概述

1.1 基本概念

互斥锁又称互斥型信号量,是一种特殊的二值性信号量,用于实现对共享资源的独占式处理。

任意时刻互斥锁的状态只有两种,开锁或闭锁。当有任务持有时,互斥锁处于闭锁状态,这个任务获得该互斥锁的所有权。当该任务释放它时,该互斥锁被开锁,任务失去该互斥锁的所有权。当一个任务持有互斥锁时,其他任务将不能再对该互斥锁进行开锁或持有。

多任务环境下往往存在多个任务竞争同一共享资源的应用场景,互斥锁可被用于对共

享资源的保护从而实现独占式访问。另外,互斥锁可以解决信号量存在的优先级翻转

问题。

Huawei LiteOS提供的互斥锁具有如下特点:

  • 通过优先级继承算法,解决优先级翻转问题。

1.2 运作机制

1.2.1 互斥锁运作原理

多任务环境下会存在多个任务访问同一公共资源的场景,而有些公共资源是非共享的,需要任务进行独占式处理。互斥锁怎样来避免这种冲突呢?

用互斥锁处理非共享资源的同步访问时,如果有任务访问该资源,则互斥锁为加锁状态。此时其他任务如果想访问这个公共资源则会被阻塞,直到互斥锁被持有该锁的任务释放后,其他任务才能重新访问该公共资源,此时互斥锁再次上锁,如此确保同一时刻只有一个任务正在访问这个公共资源,保证了公共资源操作的完整性。

1.3 开发指导

1.3.1 使用场景

互斥锁可以提供任务之间的互斥机制,用来防止两个任务在同一时刻访问相同的共享资源

1.3.2 功能

Huawei LiteOS 系统中的互斥锁模块为用户提供下面几种功能。

功能分类 接口名 描述
互斥锁的创建和删除 LOS_MuxCreate 创建互斥锁
== LOS_MuxDelete 删除指定的互斥锁
互斥锁的申请和释放 LOS_MuxPend 申请指定的互斥锁
== LOS_MuxPost 释放指定的互斥锁

1.3.3 开发流程

互斥锁典型场景的开发流程:

  1. 创建互斥锁LOS_MuxCreate。
  2. 申请互斥锁LOS_MuxPend。

申请模式有三种:无阻塞模式、永久阻塞模式、定时阻塞模式。

  • 无阻塞模式:任务需要申请互斥锁,若该互斥锁当前没有任务持有,或者持有该互斥锁的任务和申请该互斥锁的任务为同一个任务,则申请成功
  • 永久阻塞模式:任务需要申请互斥锁,若该互斥锁当前没有被占用,则申请成功。否则,该任务进入阻塞态,系统切换到就绪任务中优先级最高者继续执行。任务进入阻塞态后,直到有其他任务释放该互斥锁,阻塞任务才会重新得以执行
  • 定时阻塞模式:任务需要申请互斥锁,若该互斥锁当前没有被占用,则申请成功。否则该任务进入阻塞态,系统切换到就绪任务中优先级最高者继续执行。任务进入阻塞态后,指定时间超时前有其他任务释放该互斥锁,或者用户指定时间超时后,阻塞任务才会重新得以执行
  1. 释放互斥锁LOS_MuxPost。
  • 如果有任务阻塞于指定互斥锁,则唤醒最早被阻塞的任务,该任务进入就绪态,并进行任务调度;
  • 如果没有任务阻塞于指定互斥锁,则互斥锁释放成功。
  1. 删除互斥锁LOS_MuxDelete。

1.3.4 互斥锁错误码

对互斥锁存在失败的可能性操作,包括互斥锁创建,互斥锁删除,互斥锁申请,互斥锁释放

序号 定义 实际数值 描述 参考解决方案
1 LOS_ERRNO_MUX_NO_MEMORY 0x02001d00 内存请求失败 减少互斥锁限制数量的上限
2 LOS_ERRNO_MUX_INVALID 0x02001d01 互斥锁不可用 传入有效的互斥锁的ID
3 LOS_ERRNO_MUX_PTR_NULL 0x02001d02 入参为空 确保入参可用
4 LOS_ERRNO_MUX_ALL_BUSY 0x02001d03 没有互斥锁可用 增加互斥锁限制数量的上限
5 LOS_ERRNO_MUX_UNAVAILABLE 0x02001d04 锁失败,因为锁被其他线程使用 等待其他线程解锁或者设置等待时间
6 LOS_ERRNO_MUX_PEND_INTERR 0x02001d05 在中断中使用互斥锁 在中断中禁止调用此接口
7 LOS_ERRNO_MUX_PEND_IN_LOCK 0x02001d06 任务调度没有使能,线程等待另一个线程释放锁 设置PEND为非阻塞模式或者使能任务调度
8 LOS_ERRNO_MUX_TIMEOUT 0x02001d07 互斥锁PEND超时 增加等待时间或者设置一直等待模式
9 LOS_ERRNO_MUX_OVERFLOW 0x02001d08 暂未使用,待扩展
10 LOS_ERRNO_MUX_PENDED 0x02001d09 删除正在使用的锁 等待解锁再删除锁
11 LOS_ERRNO_MUX_GET_COUNT_ERR 0x02001d0a 暂未使用,待扩展
12 LOS_ERRNO_MUX_REG_ERROR 0x02001d0b 暂未使用,待扩展

错误码定义:错误码是一个32位的存储单元, 31~24位表示错误等级, 23~16位表示错误码标志, 15~8位代表错误码所属模块, 7~0位表示错误码序号,如下

#define LOS_ERRNO_OS_ERROR(MID, ERRNO) \
(LOS_ERRTYPE_ERROR | LOS_ERRNO_OS_ID | ((UINT32)(MID) << 8) | (ERRNO))
LOS_ERRTYPE_ERROR: Define critical OS errors
LOS_ERRNO_OS_ID: OS error code flag
LOS_MOD_MUX: Mutex module ID
MID: OS_MOUDLE_ID
ERRNO: error ID number

例如:

LOS_ERRNO_MUX_TIMEOUT LOS_ERRNO_OS_ERROR(LOS_MOD_MUX, 0x07)

1.3.5 平台差异性

1.4 注意事项

  • 两个任务不能对同一把互斥锁加锁。如果某任务对已被持有的互斥锁加锁,则该任务会被挂起,直到持有该锁的任务对互斥锁解锁,才能执行对这把互斥锁的加锁操作。
  • 互斥锁不能在中断服务程序中使用。
  • Huawei LiteOS作为实时操作系统需要保证任务调度的实时性,尽量避免任务的长时间阻塞,因此在获得互斥锁之后,应该尽快释放互斥锁。
  • 持有互斥锁的过程中,不得再调用LOS_TaskPriSet等接口更改持有互斥锁任务的优先级。

1.5 编程实例

1.5.1 实例描述

本实例实现如下流程。

  1. 任务Example_TaskEntry创建一个互斥锁,锁任务调度,创建两个任务Example_MutexTask1、 Example_MutexTask2,Example_MutexTask2优先级高于Example_MutexTask1,解锁任务调度。
  2. Example_MutexTask2被调度,永久申请互斥锁,然后任务休眠100Tick,Example_MutexTask2挂起, Example_MutexTask1被唤醒。
  3. Example_MutexTask1申请互斥锁,等待时间为10Tick,因互斥锁仍被Example_MutexTask2持有, Example_MutexTask1挂起, 10Tick后未拿到互斥锁,Example_MutexTask1被唤醒,试图以永久等待申请互斥锁, Example_MutexTask1挂起。
  4. 100Tick后Example_MutexTask2唤醒, 释放互斥锁后, Example_MutexTask1被调度运行,最后释放互斥锁。
  5. Example_MutexTask1执行完, 300Tick后任务Example_TaskEntry被调度运行,删除互斥锁

1.5.2 编程示例

前提条件:

  • 在los_config.h中,将OS_INCLUDE_MUX配置项打开。
  • 配好OS_MUX_MAX_SUPPORT_NUM最大的互斥锁个数

代码实现如下:

#include "los_mux.h
#include "los_task.h"
/*互斥锁句柄ID*/
MUX_HANDLE_T g_Testmux01
/*任务PID*/
UINT32 g_TestTaskID01;
UINT32 g_TestTaskID02;
VOID Example_MutexTask1()
{
UINT32 uwRet;
printf("task1 try to get mutex, wait 10 Tick.\n");
/*申请互斥锁*/
uwRet=LOS_MuxPend(g_Testmux01, 10);
if(uwRet == LOS_OK)
{
printf("task1 get mutex g_Testmux01.\n");
/*释放互斥锁*/
LOS_MuxPost(g_Testmux01);
return;
}
else if(uwRet == LOS_ERRNO_MUX_TIMEOUT )
{
printf("task1 timeout and try to get mutex, wait forever.\n");
/*申请互斥锁*/
uwRet = LOS_MuxPend(g_Testmux01, LOS_WAIT_FOREVER);
if(uwRet == LOS_OK)
{
printf("task1 wait forever,get mutex g_Testmux01.\n");
/*释放互斥锁*/
LOS_MuxPost(g_Testmux01);
return;
}
}
return;
}
VOID Example_MutexTask2()
{
UINT32 uwRet;
printf("task2 try to get mutex, wait forever.\n");
/*申请互斥锁*/
uwRet=LOS_MuxPend(g_Testmux01, LOS_WAIT_FOREVER);
printf("task2 get mutex g_Testmux01 and suspend 100 Tick.\n");
/*任务休眠100 Tick*/
LOS_TaskDelay(100);
printf("task2 resumed and post the g_Testmux01\n");
/*释放互斥锁*/
LOS_MuxPost(g_Testmux01);
return;
}
UINT32 Example_TaskEntry()
{
UINT32 uwRet;
TSK_INIT_PARAM_S stTask1;
TSK_INIT_PARAM_S stTask2;
/*创建互斥锁*/
LOS_MuxCreate(&g_Testmux01);
/*锁任务调度*/
LOS_TaskLock();
/*创建任务1*/
memset(&stTask1, 0, sizeof(TSK_INIT_PARAM_S));
stTask1.pfnTaskEntry = (TSK_ENTRY_FUNC)Example_MutexTask1;
stTask1.pcName = "MutexTsk1";
stTask1.uwStackSize = OS_TSK_DEFAULT_STACK_SIZE;
stTask1.usTaskPrio = 5;
uwRet = LOS_TaskCreate(&g_TestTaskID01, &stTask1);
if(uwRet != LOS_OK)
{
printf("task1 create failed .\n");
return LOS_NOK;
}
/*创建任务2*/
memset(&stTask2, 0, sizeof(TSK_INIT_PARAM_S));
stTask2.pfnTaskEntry = (TSK_ENTRY_FUNC)Example_MutexTask2;
stTask2.pcName = "MutexTsk2";
stTask2.uwStackSize = OS_TSK_DEFAULT_STACK_SIZE;
stTask2.usTaskPrio = 4;
uwRet = LOS_TaskCreate(&g_TestTaskID02, &stTask2);
if(uwRet != LOS_OK)
{
printf("task2 create failed .\n");
return LOS_NOK;
}
/*解锁任务调度*/
LOS_TaskUnlock();
/*任务休眠300 Tick*/
LOS_TaskDelay(300);
/*删除互斥锁*/
LOS_MuxDelete(g_Testmux01);
/*删除任务1*/
uwRet = LOS_TaskDelete(g_TestTaskID01);
if(uwRet != LOS_OK)
{
printf("task1 delete failed .\n");
return LOS_NOK;
}
/*删除任务2*/
uwRet = LOS_TaskDelete(g_TestTaskID02);
if(uwRet != LOS_OK)
{
printf("task2 delete failed .\n");
return LOS_NOK;
}
return LOS_OK;
}

1.5.3 结果验证

编译运行得到的结果为:
task2 try to get mutex, wait forever.
task2 get mutex g_Testmux01 and suspend 100 ticks.
task1 try to get mutex, wait 10 ticks.
task1 timeout and try to get mutex, wait forever.
task2 resumed and post the g_Testmux01
task1 wait forever,get mutex g_Testmux01

liteos互斥锁(七)的更多相关文章

  1. 一文带你剖析LiteOS互斥锁Mutex源代码

    摘要:多任务环境下会存在多个任务访问同一公共资源的场景,而有些公共资源是非共享的临界资源,只能被独占使用.LiteOS使用互斥锁来避免这种冲突,互斥锁是一种特殊的二值性信号量,用于实现对临界资源的独占 ...

  2. node源码详解(七) —— 文件异步io、线程池【互斥锁、条件变量、管道、事件对象】

    本作品采用知识共享署名 4.0 国际许可协议进行许可.转载保留声明头部与原文链接https://luzeshu.com/blog/nodesource7 本博客同步在https://cnodejs.o ...

  3. day 7-4 互斥锁与队列

    一. 基本定义 互斥锁(英语:英语:Mutual exclusion,缩写 Mutex)是一种用于多线程编程中,防止两条线程同时对同一公共资源(比如全局变量)进行读写的机制.该目的通过将代码切片成一个 ...

  4. Python 开启线程的2中方式,线程VS进程(守护线程、互斥锁)

    知识点一: 进程:资源单位 线程:才是CPU的执行单位 进程的运行: 开一个进程就意味着开一个内存空间,存数据用,产生的数据往里面丢 线程的运行: 代码的运行过程就相当于运行了一个线程 辅助理解:一座 ...

  5. golang互斥锁和读写锁

    一.互斥锁 互斥锁是传统的并发程序对共享资源进行访问控制的主要手段.它由标准库代码包sync中的Mutex结构体类型代表.sync.Mutex类型(确切地说,是*sync.Mutex类型)只有两个公开 ...

  6. Java 种15种锁的介绍:公平锁,可重入锁,独享锁,互斥锁等等…

    Java 中15种锁的介绍 1,在读很多并发文章中,会提及各种各样的锁,如公平锁,乐观锁,下面是对各种锁的总结归纳: 公平锁/非公平锁 可重入锁/不可重入锁 独享锁/共享锁 互斥锁/读写锁 乐观锁/悲 ...

  7. 子进程回收资源两种方式,僵尸进程与孤儿进程,守护进程,进程间数据隔离,进程互斥锁,队列,IPC机制,线程,守护线程,线程池,回调函数add_done_callback,TCP服务端实现并发

    子进程回收资源两种方式 - 1) join让主进程等待子进程结束,并回收子进程资源,主进程再结束并回收资源. - 2) 主进程 “正常结束” ,子进程与主进程一并被回收资源. from multipr ...

  8. 并发编程(二)--利用Process类开启进程、僵尸进程、孤儿进程、守护进程、互斥锁、队列与管道

    一.multiprocessing模块 1.multiprocessing模块用来开启子进程,并在子进程中执行我们定制的任务(比如函数),该模块与多线程模块threading的编程接口类似. 2.mu ...

  9. Python进阶----线程基础,开启线程的方式(类和函数),线程VS进程,线程的方法,守护线程,详解互斥锁,递归锁,信号量

    Python进阶----线程基础,开启线程的方式(类和函数),线程VS进程,线程的方法,守护线程,详解互斥锁,递归锁,信号量 一丶线程的理论知识 什么是线程:    1.线程是一堆指令,是操作系统调度 ...

随机推荐

  1. Linux 的 netstat 命令

    转载 https://www.cnblogs.com/ct20150811/p/9432043.html 一般用  netstat -lnp |grep "程序名"

  2. CodeForces - 1251E2 (思维+贪心)

    题意 https://vjudge.net/problem/CodeForces-1251E2 一共有 n 个选民,你可以付出 pi​ 的代价让第 i 个选民为你投票,或者,在为你投票的人数达到 mi ...

  3. Html学习之八(CSS选择器的使用--属性选择器)

    一.前缀属性选择器 <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> < ...

  4. MongoDB介绍(一)

    MongoDB是一个基于分布式文件存储的数据库.由C++语言编写.旨在为WEB应用提供可扩展的高性能数据存储解决方案. MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功 ...

  5. 有史以来Mysql面试题大全详解?

    1.MySQL的复制原理以及流程 根柢原理流程,3个线程以及之间的相关: 主:binlog线程——记载下悉数改动了数据库数据的语句,放进master上的binlog中:​ 从:io线程——在运用sta ...

  6. bolb与base64的图片互转

    直接看图简单明了. 注:便于测试你可以自己用base64图片测试互转一下.这里base64图片太长了就不给予展示了,望理解

  7. AtCoder Beginner Contest 139F Engines

    链接 problem 给出\(n\)个二元组\((x,y)\).最初位于原点\((0,0)\),每次可以从这\(n\)个二元组中挑出一个,然后将当前的坐标\((X,Y)\)变为\((X+x,Y+y)\ ...

  8. 记录错误or日记(更新中)

    前言: 从2018.8-17开始记录 本篇随笔记录做题时的小错误(大多数),考试总结(懒得总结了),做过的每个题的错误 2019.12.7 傻逼学校,给我三个小时假期给你们做题挣工资 2019.11. ...

  9. 【转】java MessageDigest类的作用 :提供信息摘要 算法( MD5 或 SHA 等)的功能

    一.结构和概述: java.lang.Object java.security.MessageDigestSpi java.security.MessageDigest 声明:public abstr ...

  10. python数据分析教程大全

    第一篇:Anaconda安装和使用 第二篇:Jupyter norebook使用 第三篇:pandas教程 第四篇:numpy教程 第五篇:Matplotlib教程 第六篇:实战项目 期待吗?(微笑脸 ...