连续爆炸的开端。

  从这一场开始我没状态了

  T1 star way to heaven

    受强降雨boboQQQ影响,我一直认为这是一道和凸包有关的计算几何题

    很快就弃了,除了期望没做过带实数的题,所以吓尿了。

    正解仍然是上一场干掉我的最小生成树!

    上一场没改明白啊,啪啪打脸!

    mark:求所有路径上最小限制的最大值,善用最小生成树。

    用prim的算法流程可能比较好理解。

    众所周知,skyh就是天皇prim和dijkstra打起来简直一模一样。

    唯一的不同在于把新节点压入堆中时带着的附加权值,一个是到当前联通块的距离,一个是到源点的距离。

    所以这使得两种算法得到了不同的结果:一个使得每个点联通代价最小,一个使得每个点到原点代价最小。

    在本题中,要求的其实就是点之间的最小联通代价的最大值。也就是千里之堤上那个可供突破的蚁穴。

    以后不能再忘了。

  T2 god knows

    神仙 我甚至做不到系统地总结这题涉及的思考

    一些零碎的东西:

    1.如果维护的东西受到一些限制,可以尝试翻转整个坐标系,就可能在不影响维护内容复杂性的前提下简化维护操作

    2.线段树功能很强大,可以维护置换,操作效果(JKL)以及本题的单调栈等。很多看似不能维护但是如果对某子树记录其被另一子树影响后的信息,就可能做到复杂度有保证地维护一些东西

    3.分析复杂度可以参考嵌套函数的调用次数

  T3 lost my music

    板哥yy出了链栈

    链栈上倍增维护凸包,稍帅

NOIP模拟 24的更多相关文章

  1. HZOJ 20190818 NOIP模拟24题解

    T1 字符串: 裸的卡特兰数题,考拉学长讲过的原题,就是bzoj3907网格那题,而且这题更简单,连高精都不用 结论$C_{n+m}^{n}-C_{n+m}^{n+1}$ 考场上10min切掉 #in ...

  2. NOIP 模拟 $24\; \rm graph$

    题解 \(by\;zj\varphi\) 首先一个点能否选择的条件是 \(dis_{1,x}+dis_{x,n}=dis_{1,n}\) 正解是计算一条道路上的所有为 \(-1\) 边的选择范围,是个 ...

  3. NOIP 模拟 $24\; \rm block$

    题解 \(by\;zj\varphi\) 因为它要求大于它的且放在它前的数的个数要小于它的 \(key\) 值,所以先按 \(\rm val\) 值排序,然后按 \(\rm key\) 值排序,按顺序 ...

  4. NOIP 模拟 $24\; \rm matrix$

    题解 \(by\;zj\varphi\) 发现 \(\rm n,m\) 都很小,考虑分行状压. 但是上一行和下一行的按钮状态会对当前行造成影响,所以再枚举一个上一行的按钮状态. 因为对于两行,只有如下 ...

  5. NOIP模拟题汇总(加厚版)

    \(NOIP\)模拟题汇总(加厚版) T1 string 描述 有一个仅由 '0' 和 '1' 组成的字符串 \(A\),可以对其执行下列两个操作: 删除 \(A\)中的第一个字符: 若 \(A\)中 ...

  6. NOIP模拟 1

    NOIP模拟1,到现在时间已经比较长了.. 那天是6.14,今天7.18了 //然鹅我看着最前边缺失的模拟1,还是终于忍不住把它补上,为了保持顺序2345重新发布了一遍.. #   用  户  名   ...

  7. NOIP模拟17.9.22

    NOIP模拟17.9.22 前进![问题描述]数轴的原点上有一只青蛙.青蛙要跳到数轴上≥

  8. NOIP 模拟4 T2

    本题属于二和一问题 子问题相互对称 考虑对于问题一:知a求b 那么根据b数组定义式 显然能发现问题在于如何求dis(最短路) 有很多算法可供选择 dijsktra,floyed,bfs/dfs,spf ...

  9. noip模拟33

    \(\color{white}{\mathbb{失足而坠千里,翻覆而没百足,名之以:深渊}}\) 这场考试的时间分配非常不科学 开题试图想 \(t1\) 正解,一个半小时后还是只有暴力,特别惊慌失措 ...

随机推荐

  1. 去掉文件 BOM 头

    什么是 BOM? BOM 全称是 Byte Order Mark,意思是字节顺序标记.常用来当作标示文件是以 UTF-8.UTF-16 或者 UTF-32 编码的标记. 去除 BOM 头方法 vim ...

  2. [docker swarm] 从单容器走向负载均衡部署

    背景 之前写过<<docker-compose真香>> 和<docker-compose.docker stack前世今生>两篇博客, 回顾一下思路: ① dock ...

  3. Dubbo学习系列之十五(Seata分布式事务方案TCC模式)

    上篇的续集. 工具: Idea201902/JDK11/Gradle5.6.2/Mysql8.0.11/Lombok0.27/Postman7.5.0/SpringBoot2.1.9/Nacos1.1 ...

  4. 02-23 决策树CART算法

    目录 决策树CART算法 一.决策树CART算法学习目标 二.决策树CART算法详解 2.1 基尼指数和熵 2.2 CART算法对连续值特征的处理 2.3 CART算法对离散值特征的处理 2.4 CA ...

  5. Web开发小贴士 -- 全面了解Cookie

    一.Cookie的出现 浏览器和服务器之间的通信少不了HTTP协议,但是因为HTTP协议是无状态的,所以服务器并不知道上一次浏览器做了什么样的操作,这样严重阻碍了交互式Web应用程序的实现. 针对上述 ...

  6. html隐写术,使用摩尔兹电码/莫尔兹电码存储信息 水波纹样式 Morse code

    html水波纹样式,源码直接下载,代码有注释教程,小白可以看懂. 动画啥的都做好了,效果我觉得还不错 网上文章看到xbox 工程师使用隐写术,在界面的右下角放上了含有用户激活码的水波纹样式,一般人还真 ...

  7. ZGC介绍

    zgc是一款可拓展的低时延,为实现以下几个目标而诞生的垃圾回收器: 停顿时间不超过10ms 停顿时间不会导致堆大小增长 堆大小范围可支持几G到几T 再看一下zgc的标签: region-based ( ...

  8. 算法学习之剑指offer(十二)

    一 题目描述 请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径.路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子.如果一条路径经过了矩 ...

  9. Flask学习总结

    Flask的使用以及返回值(其中Response后续详细单独补充) Flask的路由解读以及其配置 Flask的请求扩展 Flask中的cookie和session Flask中的request和re ...

  10. BBEdit 13.0 for Mac 打开大文件不吃力

    BBEdit 是一款拥有 16 年历史的 HTML 和文本编辑器,拥有高性能且流畅的文本处理能力,适用于 Web 和软件开发者,具备功能丰富且强大的智能搜索.代码折叠.FTP 和 SFTP 管理等功能 ...