(手机横屏看源码更方便)


注:java源码分析部分如无特殊说明均基于 java8 版本。

注:本文基于ScheduledThreadPoolExecutor定时线程池类。

简介

前面我们一起学习了普通任务、未来任务的执行流程,今天我们再来学习一种新的任务——定时任务。

定时任务是我们经常会用到的一种任务,它表示在未来某个时刻执行,或者未来按照某种规则重复执行的任务。

问题

(1)如何保证任务是在未来某个时刻才被执行?

(2)如何保证任务按照某种规则重复执行?

来个栗子

创建一个定时线程池,用它来跑四种不同的定时任务。

public class ThreadPoolTest03 {
public static void main(String[] args) throws ExecutionException, InterruptedException {
// 创建一个定时线程池
ScheduledThreadPoolExecutor scheduledThreadPoolExecutor = new ScheduledThreadPoolExecutor(5); System.out.println("start: " + System.currentTimeMillis()); // 执行一个无返回值任务,5秒后执行,只执行一次
scheduledThreadPoolExecutor.schedule(() -> {
System.out.println("spring: " + System.currentTimeMillis());
}, 5, TimeUnit.SECONDS); // 执行一个有返回值任务,5秒后执行,只执行一次
ScheduledFuture<String> future = scheduledThreadPoolExecutor.schedule(() -> {
System.out.println("inner summer: " + System.currentTimeMillis());
return "outer summer: ";
}, 5, TimeUnit.SECONDS);
// 获取返回值
System.out.println(future.get() + System.currentTimeMillis()); // 按固定频率执行一个任务,每2秒执行一次,1秒后执行
// 任务开始时的2秒后
scheduledThreadPoolExecutor.scheduleAtFixedRate(() -> {
System.out.println("autumn: " + System.currentTimeMillis());
LockSupport.parkNanos(TimeUnit.SECONDS.toNanos(1));
}, 1, 2, TimeUnit.SECONDS); // 按固定延时执行一个任务,每延时2秒执行一次,1秒执行
// 任务结束时的2秒后,本文由公从号“彤哥读源码”原创
scheduledThreadPoolExecutor.scheduleWithFixedDelay(() -> {
System.out.println("winter: " + System.currentTimeMillis());
LockSupport.parkNanos(TimeUnit.SECONDS.toNanos(1));
}, 1, 2, TimeUnit.SECONDS);
}
}

定时任务总体分为四种:

(1)未来执行一次的任务,无返回值;

(2)未来执行一次的任务,有返回值;

(3)未来按固定频率重复执行的任务;

(4)未来按固定延时重复执行的任务;

本文主要以第三种为例进行源码解析。

scheduleAtFixedRate()方法

提交一个按固定频率执行的任务。

public ScheduledFuture<?> scheduleAtFixedRate(Runnable command,
long initialDelay,
long period,
TimeUnit unit) {
// 参数判断
if (command == null || unit == null)
throw new NullPointerException();
if (period <= 0)
throw new IllegalArgumentException(); // 将普通任务装饰成ScheduledFutureTask
ScheduledFutureTask<Void> sft =
new ScheduledFutureTask<Void>(command,
null,
triggerTime(initialDelay, unit),
unit.toNanos(period));
// 钩子方法,给子类用来替换装饰task,这里认为t==sft
RunnableScheduledFuture<Void> t = decorateTask(command, sft);
sft.outerTask = t;
// 延时执行
delayedExecute(t);
return t;
}

可以看到,这里的处理跟未来任务类似,都是装饰成另一个任务,再拿去执行,不同的是这里交给了delayedExecute()方法去执行,这个方法是干嘛的呢?

delayedExecute()方法

延时执行。

private void delayedExecute(RunnableScheduledFuture<?> task) {
// 如果线程池关闭了,执行拒绝策略
if (isShutdown())
reject(task);
else {
// 先把任务扔到队列中去
super.getQueue().add(task);
// 再次检查线程池状态
if (isShutdown() &&
!canRunInCurrentRunState(task.isPeriodic()) &&
remove(task))
task.cancel(false);
else
// 保证有足够有线程执行任务
ensurePrestart();
}
}
void ensurePrestart() {
int wc = workerCountOf(ctl.get());
// 创建工作线程
// 注意,这里没有传入firstTask参数,因为上面先把任务扔到队列中去了
// 另外,没用上maxPoolSize参数,所以最大线程数量在定时线程池中实际是没有用的
if (wc < corePoolSize)
addWorker(null, true);
else if (wc == 0)
addWorker(null, false);
}

到这里就结束了?!

实际上,这里只是控制任务能不能被执行,真正执行任务的地方在任务的run()方法中。

还记得上面的任务被装饰成了ScheduledFutureTask类的实例吗?所以,我们只要看ScheduledFutureTask的run()方法就可以了。

ScheduledFutureTask类的run()方法

定时任务执行的地方。

public void run() {
// 是否重复执行
boolean periodic = isPeriodic();
// 线程池状态判断
if (!canRunInCurrentRunState(periodic))
cancel(false);
// 一次性任务,直接调用父类的run()方法,这个父类实际上是FutureTask
// 这里我们不再讲解,有兴趣的同学看看上一章的内容
else if (!periodic)
ScheduledFutureTask.super.run();
// 重复性任务,先调用父类的runAndReset()方法,这个父类也是FutureTask
// 本文主要分析下面的部分
else if (ScheduledFutureTask.super.runAndReset()) {
// 设置下次执行的时间
setNextRunTime();
// 重复执行,本文由公从号“彤哥读源码”原创
reExecutePeriodic(outerTask);
}
}

可以看到,对于重复性任务,先调用FutureTask的runAndReset()方法,再设置下次执行的时间,最后再调用reExecutePeriodic()方法。

FutureTask的runAndReset()方法与run()方法类似,只是其任务运行完毕后不会把状态修改为NORMAL,有兴趣的同学点进源码看看。

再来看看reExecutePeriodic()方法。

void reExecutePeriodic(RunnableScheduledFuture<?> task) {
// 线程池状态检查
if (canRunInCurrentRunState(true)) {
// 再次把任务扔到任务队列中
super.getQueue().add(task);
// 再次检查线程池状态
if (!canRunInCurrentRunState(true) && remove(task))
task.cancel(false);
else
// 保证工作线程足够
ensurePrestart();
}
}

到这里是不是豁然开朗了,原来定时线程池执行重复任务是在任务执行完毕后,又把任务扔回了任务队列中。

重复性的问题解决了,那么,它是怎么控制任务在某个时刻执行的呢?

OK,这就轮到我们的延时队列登场了。

DelayedWorkQueue内部类

我们知道,线程池执行任务时需要从任务队列中拿任务,而普通的任务队列,如果里面有任务就直接拿出来了,但是延时队列不一样,它里面的任务,如果没有到时间也是拿不出来的,这也是前面分析中一上来就把任务扔进队列且创建Worker没有传入firstTask的原因。

说了这么多,它到底是怎么实现的呢?

其实,延时队列我们在前面都详细分析过,想看完整源码分析的可以看看之前的《死磕 java集合之DelayQueue源码分析》。

延时队列内部是使用“堆”这种数据结构来实现的,有兴趣的同学可以看看之前的《拜托,面试别再问我堆(排序)了!》。

我们这里只拿一个take()方法出来分析。

public RunnableScheduledFuture<?> take() throws InterruptedException {
final ReentrantLock lock = this.lock;
// 加锁
lock.lockInterruptibly();
try {
for (;;) {
// 堆顶任务
RunnableScheduledFuture<?> first = queue[0];
// 如果队列为空,则等待
if (first == null)
available.await();
else {
// 还有多久到时间
long delay = first.getDelay(NANOSECONDS);
// 如果小于等于0,说明这个任务到时间了,可以从队列中出队了
if (delay <= 0)
// 出队,然后堆化
return finishPoll(first);
// 还没到时间
first = null;
// 如果前面有线程在等待,直接进入等待
if (leader != null)
available.await();
else {
// 当前线程作为leader
Thread thisThread = Thread.currentThread();
leader = thisThread;
try {
// 等待上面计算的延时时间,再自动唤醒
available.awaitNanos(delay);
} finally {
// 唤醒后再次获得锁后把leader再置空
if (leader == thisThread)
leader = null;
}
}
}
}
} finally {
if (leader == null && queue[0] != null)
// 相当于唤醒下一个等待的任务
available.signal();
// 解锁,本文由公从号“彤哥读源码”原创
lock.unlock();
}
}

大致的原理是,利用堆的特性获取最快到时间的任务,即堆顶的任务:

(1)如果堆顶的任务到时间了,就让它从队列中了队;

(2)如果堆顶的任务还没到时间,就看它还有多久到时间,利用条件锁等待这段时间,待时间到了后重新走(1)的判断;

这样就解决了可以在指定时间后执行任务。

其它

其实,ScheduledThreadPoolExecutor也是可以使用execute()或者submit()提交任务的,只不过它们会被当成0延时的任务来执行一次。

public void execute(Runnable command) {
schedule(command, 0, NANOSECONDS);
}
public <T> Future<T> submit(Callable<T> task) {
return schedule(task, 0, NANOSECONDS);
}

总结

实现定时任务有两个问题要解决,分别是指定未来某个时刻执行任务、重复执行。

(1)指定某个时刻执行任务,是通过延时队列的特性来解决的;

(2)重复执行,是通过在任务执行后再次把任务加入到队列中来解决的。

彩蛋

到这里基本上普通的线程池的源码解析就结束了,这种线程池是比较经典的实现方式,整体上来说,效率相对不是特别高,因为所有的工作线程共用同一个队列,每次从队列中取任务都要加锁解锁操作。

那么,能不能给每个工作线程配备一个任务队列呢,在提交任务的时候就把任务分配给指定的工作线程,这样在取任务的时候就不需要频繁的加锁解锁了。

答案是肯定的,下一章我们一起来看看这种基于“工作窃取”理论的线程池——ForkJoinPool。


欢迎关注我的公众号“彤哥读源码”,查看更多源码系列文章, 与彤哥一起畅游源码的海洋。

死磕 java线程系列之线程池深入解析——定时任务执行流程的更多相关文章

  1. 死磕 java同步系列之CyclicBarrier源码解析——有图有真相

    问题 (1)CyclicBarrier是什么? (2)CyclicBarrier具有什么特性? (3)CyclicBarrier与CountDownLatch的对比? 简介 CyclicBarrier ...

  2. 死磕 java同步系列之Phaser源码解析

    问题 (1)Phaser是什么? (2)Phaser具有哪些特性? (3)Phaser相对于CyclicBarrier和CountDownLatch的优势? 简介 Phaser,翻译为阶段,它适用于这 ...

  3. 死磕 java同步系列之StampedLock源码解析

    问题 (1)StampedLock是什么? (2)StampedLock具有什么特性? (3)StampedLock是否支持可重入? (4)StampedLock与ReentrantReadWrite ...

  4. 死磕 java同步系列之Semaphore源码解析

    问题 (1)Semaphore是什么? (2)Semaphore具有哪些特性? (3)Semaphore通常使用在什么场景中? (4)Semaphore的许可次数是否可以动态增减? (5)Semaph ...

  5. 死磕 java同步系列之ReentrantReadWriteLock源码解析

    问题 (1)读写锁是什么? (2)读写锁具有哪些特性? (3)ReentrantReadWriteLock是怎么实现读写锁的? (4)如何使用ReentrantReadWriteLock实现高效安全的 ...

  6. 死磕 java同步系列之ReentrantLock源码解析(二)——条件锁

    问题 (1)条件锁是什么? (2)条件锁适用于什么场景? (3)条件锁的await()是在其它线程signal()的时候唤醒的吗? 简介 条件锁,是指在获取锁之后发现当前业务场景自己无法处理,而需要等 ...

  7. 死磕 java同步系列之ReentrantLock源码解析(一)——公平锁、非公平锁

    问题 (1)重入锁是什么? (2)ReentrantLock如何实现重入锁? (3)ReentrantLock为什么默认是非公平模式? (4)ReentrantLock除了可重入还有哪些特性? 简介 ...

  8. 死磕 java线程系列之线程池深入解析——普通任务执行流程

    (手机横屏看源码更方便) 注:java源码分析部分如无特殊说明均基于 java8 版本. 注:线程池源码部分如无特殊说明均指ThreadPoolExecutor类. 简介 前面我们一起学习了Java中 ...

  9. 死磕 java同步系列之CountDownLatch源码解析

随机推荐

  1. 【PCIE-1】---Pcie基本概念普及(扫盲篇--巨适合新手)

    PCIE由早期得PCI扩展衍生而来并且对兼容PCI,两者得主要区别在于并行到串行得切换,且速率更快.目前主板上越来越多得设备都挂载到PCI总线下面,甚至部分硬盘也会挂载PCI总线下面,可见PCIE得应 ...

  2. 【网络安全】给你讲清楚什么是XSS攻击

    给你讲清楚什么是XSS攻击 1. 什么是XSS攻击 跨站脚本攻击(Cross Site Scripting)本来的缩写为CSS,为了与层叠样式表(Cascading Style Sheets,CSS) ...

  3. kubernetes垃圾回收器GarbageCollector Controller源码分析(二)

    kubernetes版本:1.13.2 接上一节:kubernetes垃圾回收器GarbageCollector Controller源码分析(一) 主要步骤 GarbageCollector Con ...

  4. spring-data-redis-cache 使用及源码走读

    预期读者 准备使用 spring 的 data-redis-cache 的同学 了解 @CacheConfig,@Cacheable,@CachePut,@CacheEvict,@Caching 的使 ...

  5. Xshell、Xftp 5、6 解决“要继续使用此程序,您必须应用最新的更新或使用新版本”

    今天打开Xshell.Xftp,突然弹出“要继续使用此程序,您必须应用最新的更新或使用新版本”. 后来经过一番搜索发现,XShell配置文件中写入了强制升级时间,这个版本是2017年12月27日发布的 ...

  6. sublime text2解决中文乱码,支持中文的设置方法

    步骤: 1.安装Sublime Package Control.        在Sublime Text 2上用Ctrl+-打开控制台并在里面输入以下代码,Sublime Text 2就会自动安装P ...

  7. 神奇的Java僵尸(defunct)进程问题排查过程

    现象描述 大概1个月多以前 在启动脚本中增加了tail -f 用来启动后追踪日志判断是否启动成功 后发现无法执行shutdown.sh(卡住 利用curl) 然后无奈使用kill -9 但通过ps - ...

  8. Vue-CLI项目-axios模块前后端交互(类似ajax提交)

    08.31自我总结 Vue-CLI项目-axios前后端交互 一.模块的安装 npm install axios --save #--save可以不用写 二.配置main.js import axio ...

  9. 就个人银行账户管理程序谈谈C++和Java的异同

    4_9 同: Java和C++都是面向对象的语言.都有数据成员,方法,访问权限的概念. 异: 访问权限上,非private时Java的默认访问权限是包.而C++的默认访问权限是private.Java ...

  10. 构造函数语义学——Copy Constructor 篇

    构造函数语义学--Copy Constructor 篇 本文主要介绍<深度探索 C++对象模型>之<构造函数语义学>中的 Copy Constructor 构造函数的调用时机 ...