CTR@因子分解机(FM)
1. FM算法
FM(Factor Machine,因子分解机)算法是一种基于矩阵分解的机器学习算法,为了解决大规模稀疏数据中的特征组合问题。FM算法是推荐领域被验证效果较好的推荐算法之一,在电商、广告、直播等推荐领域有广泛应用。
2. FM算法优势
特征组合:通过对两两特征组合,引入交叉项特征。
解决维数灾难:通过引入隐向量,实现对特征的参数估计。
3. FM表达式
对于度为2的因子分解机FM的模型为:
其中,参数
。 aaarticlea/gif;base64,R0lGODlhMAAUALMAAP///wAAAHZ2du7u7kRERIiIiKqqqjIyMszMzGZmZpiYmNzc3FRUVLq6uhAQECIiIiH5BAEAAAAALAAAAAAwABQAAATdEEghq704a0vvIFsobsxyFcaork1XHWs8whWSyLhWNFWC5EDLgPGyNBQ3wMBhUh2Ty2aGMAAYFJUB1vEDHHgjLYAr+W6uAGqFtwhUCk2DC8N2S+CWxwVE4xAlWBJVIgJ/AIEVUmUAAl0VDymAMpAViBkLRAtJFQGDCE0FhhudEp+VjRxdIBakh5IPg5iDrIOIBgNyFn0KkRIGCQqWC30IDpa+wJZVCb0NBVmrIQLHvSoHUgyzACUisJbVIw7QFy2EeHfaIgjRKBh9K+AiBc+LGIpBGhTXifhABLwbIgAAOw==" alt="" />表示的是两个大小为aaarticlea/gif;base64,R0lGODlhCQANALMAAP///wAAAHZ2du7u7szMzDIyMhAQEKqqqlRUVJiYmNzc3Lq6ukRERIiIiCIiIgAAACH5BAEAAAAALAAAAAAJAA0AAAQyEEgxpCXF2H3QtkjySYYyKhpwJB7AusOSMs0xBsVRXRpRWo2Ww7YAFEQAByGW3CUEyAgAOw==" alt="" />的向量aaarticlea/gif;base64,R0lGODlhDQALALMAAP///wAAALq6upiYmGZmZu7u7hAQENzc3MzMzDIyMoiIiHZ2dlRUVCIiIqqqqgAAACH5BAEAAAAALAAAAAANAAsAAAQ6EIhBACjmWFsGMIiVCJsEHMGmaICzWAuzedzWOHO5BYWFsAqZhWeheRq9FmFAsxwSuuiiGbUgqdJVBAA7" alt="" />和向量aaarticlea/gif;base64,R0lGODlhDwAOALMAAP///wAAALq6upiYmGZmZu7u7hAQENzc3MzMzDIyMoiIiHZ2dlRUVCIiIqqqqkRERCH5BAEAAAAALAAAAAAPAA4AAARLEIhBACjm2H0HMIiVCJxFHsGmaFuzLczmcSzQOHLJBYWF1INFyMKzzACOgmOxcRAGxwuAgNPpEjXrxqAtIR5djkIRBjCx5cegCogAADs=" alt="" />的点积:

其中,aaarticlea/gif;base64,R0lGODlhDQALALMAAP///wAAALq6upiYmGZmZu7u7hAQENzc3MzMzDIyMoiIiHZ2dlRUVCIiIqqqqgAAACH5BAEAAAAALAAAAAANAAsAAAQ6EIhBACjmWFsGMIiVCJsEHMGmaICzWAuzedzWOHO5BYWFsAqZhWeheRq9FmFAsxwSuuiiGbUgqdJVBAA7" alt="" />表示的是系数矩阵aaarticlea/gif;base64,R0lGODlhDgAMALMAAP///wAAAHZ2dhAQEGZmZszMzJiYmDIyMqqqqoiIiO7u7rq6ulRUVAAAAAAAAAAAACH5BAEAAAAALAAAAAAOAAwAAAQ7EIgRSAEYmHAQTkGWKYSIBIoIJGoRXNkCj4GHKawKBEKW6wcGRqbDMA4AXBEzkSwxG8OsuAj8lgrkMgIAOw==" alt="" />的第aaarticlea/gif;base64,R0lGODlhBgANALMAAP///wAAAKqqqhAQEO7u7tzc3Lq6upiYmGZmZszMzHZ2diIiIoiIiAAAAAAAAAAAACH5BAEAAAAALAAAAAAGAA0AAAQiEMg5xaCk0L3NQRJxAEMCGEARUAo4ldVySooCMFKCHAQQAQA7" alt="" />维向量,且aaarticlea/gif;base64,R0lGODlh5gAWALMAAP///wAAALq6upiYmGZmZu7u7hAQENzc3MzMzDIyMoiIiHZ2dlRUVCIiIqqqqkRERCH5BAEAAAAALAAAAADmABYAAAT+EMhJq7046827/2AojmRpnmiqrmw7IoILFoNs3+FQ4LLg8BsCcEicFISfxa548TErCsRzahMoOoiEQbZoBKSSAiPw+FGcVEAizWatOw6GTdGQU5CAI4HweOwJB0wDNW2FJwpmGwyEHAcLfX1XGgMKAUt5iWeZTA+Bhp8vdhsGnhsDD2AdAgcFAZIADpeaFQIDSAWkMltntmG5J7W3v2zBvqUguxoHuw4DorR4HpIEya+0mTQABmAJMS7JeTXbEt0n2eNq3mnn3OogARzOADoC4BRvIJIIAd7WsxMxDsCToMCTgwUXCDBYyLAhQgsHGpwBIHBCQQkHIT7YEHAggIv+sB5OcKBgQbQWHS0aFBnmgT8JDWRdcLkJIssO2chtPOCugkwAC0Qx+lkiooWgE4ZaGNClA1IJSikUkMTgZoun84xcYNATJlEKARLE0iCgAaSzLwGWchDgACMPDRK9XYHLQtykG4xyuAs1g4A3A/DJ4JtVg8QL9iwg2LL4WIUDJ+NVMLAgrQZLEhB4UvDsTsPPVTEkxgxAM8HOEvRuIG36I2pPJnGw3vx6zUF3iaHYuduVXI4KCwxYzkCaUI2YKzpVKN4X+ePDqRn8ZJ7VuV1PB6Q/1k6Re/Yl3y1QPy7TAQEdUSYgEBX+HqEGCAr0Lo06A4K5reZnMD+IwgHBKPTcRwF/b/13gWqlGTAXLOcVCOAEXKmnYAWLgVFhZugstiCB/j1ITU2ISDiXc0wtOGAZjllATQNzRUbCAiaWUMBGHMB4IHQjeWCjBekdUxMIP16wIwUxVVbBg0F+QAMfkVARU4wvppLBkwAIcAmCGMGVjZUYxXKANUnCoWUNXBYg0UGt1WJBmKA4BdIKLgJ3kUsSCECAK6Uo8NVRc14hUACAiqRnCYO6GQidCAhxBCFH8Lhnm2zk5EGYbO6nQaWXkpCkDmtC6qkIBWAaQqiekvrpqTKIGoKqRbCK6gYRAAA7" alt="" />称为超参数。在因子分解机FM模型中,前面两部分是传统的线性模型,最后一部分将两个互异特征分量之间的交叉关系考虑进来。
因子分解机也可以推广到高阶的形式,即将更多互异特征分量之间的相互关系考虑进来。
4. 交叉项
算法核心为交叉项计算,可以明显降低模型时间复杂度,现在模型的复杂度为
。
5. 求解问题
FM算法主要可以处理三类问题:回归问题、二分类问题、排序。
5.1 回归问题
在回归问题中,直接使用aaarticlea/gif;base64,R0lGODlhDAASALMAAP///wAAALq6uqqqqtzc3ERERDIyMszMzO7u7nZ2dlRUVGZmZoiIiJiYmBAQECIiIiH5BAEAAAAALAAAAAAMABIAAARREEgpxryAFLPPRYniZcuCSAyBAQhzrnA8HcMyDcqENIAzKomJIBOYOIaXkORQxDwsAIZhFXgVgpgqEXlpJLzaGKOwOkoeXAnCBkiwMQ0vbxUBADs=" alt="" />作为最终的预测结果。在回归问题中使用最小均方误差作为优化标准,即
其中,aaarticlea/gif;base64,R0lGODlhEAAIALMAAP///wAAAJiYmIiIiO7u7lRUVLq6uszMzNzc3KqqqiIiIkRERHZ2dmZmZhAQEDIyMiH5BAEAAAAALAAAAAAQAAgAAAQ/EIgxiBDFWHwAIAYSCF6ikNLiGYDpScrLFC/QMG+BewvqOaxfkBBAvETHwEvwAASZS5WnMQBUAQxf9nVgVAARADs=" alt="" />表示样本的个数。
5.2 二分类问题
在二分类问题中使用Logitloss作为优化标准,即
其中,aaarticlea/gif;base64,R0lGODlhCwAIALMAAP///wAAAJiYmCIiIhAQEFRUVGZmZu7u7kRERHZ2drq6ujIyMszMzKqqqtzc3AAAACH5BAEAAAAALAAAAAALAAgAAAQoEEgxgg1EgmLOQYkGCIimLCLBaE0pOZlmhNKZHuKgFY0IMAlBYiWKAAA7" alt="" />表示的是阶跃函数Sigmoid,其数学表达式为:
6. FM&SVM
SVM的二元特征交叉参数是独立的,而FM的二元特征交叉参数是两个维的向量,交叉参数并不独立,两者相互影响。
FM可以在原始形式下进行优化学习,而基于核的非线性SVM通常需要在对偶形式下优化学习。
FM的模型预测与训练样本独立,而SVM则与训练样本有关(支持向量)。
7. 交叉项核心代码
v = normalvariate(0, 0.2) * ones((n, k)) #初始化隐向量
inter_1 = dataMatrix[x] * v
inter_2 = multiply(dataMatrix[x], dataMatrix[x]) * multiply(v, v) #multiply对应元素相乘
interaction = sum(multiply(inter_1, inter_1) - inter_2) / 2. #完成交叉项
p = w_0 + dataMatrix[x] * w + interaction #计算预测的输出
Time : 2019-10-14 09:39:44
CTR@因子分解机(FM)的更多相关文章
- 因子分解机 FM
特征组合 人工方式的特征工程,通常有两个问题: 特征爆炸 大量重要的特征组合都隐藏在数据中,无法被专家识别和设计 针对上述两个问题,广度模型和深度模型提供了不同的解决思路. 广度模型包括FM/FFM等 ...
- 推荐算法之因子分解机(FM)
在这篇文章我们将介绍因式分解机模型(FM),为行文方便后文均以FM表示.FM模型结合了支持向量机与因子分解模型的优点,并且能够用了回归.二分类以及排序任务,速度快,是推荐算法中召回与排序的利器.FM算 ...
- Factorization Machine因子分解机
隐因子分解机Factorization Machine[http://www. w2bc. com/article/113916] https://my.oschina.net/keyven/blog ...
- 万字长文,详解推荐系统领域经典模型FM因子分解机
在上一篇文章当中我们剖析了Facebook的著名论文GBDT+LR,虽然这篇paper在业内广受好评,但是毕竟GBDT已经是有些老旧的模型了.今天我们要介绍一个业内使用得更多的模型,它诞生于2010年 ...
- FM解析(因子分解机,2010)
推荐参考:(知乎) https://zhuanlan.zhihu.com/p/37963267 要点理解: 1.fm应用场景,为什么提出了fm(和lr的不同点) ctr预测,特征组合,fm的隐向量分解 ...
- fm 讲解加代码
转自: 博客 http://blog.csdn.net/google19890102/article/details/45532745/ github https://github.com/zhaoz ...
- 聊聊推荐系统,FM模型效果好在哪里?
本文始发于公众号:Coder梁 大家好,我们今天继续来聊聊推荐系统. 在上一回当中我们讨论了LR模型对于推荐系统的应用,以及它为什么适合推荐系统,并且对它的优点以及缺点进行了分析.最后我们得出了结论, ...
- Factorization Machine算法
参考: http://stackbox.cn/2018-12-factorization-machine/ https://baijiahao.baidu.com/s?id=1641085157432 ...
- 3.1、Factorization Machine模型
Factorization Machine模型 在Logistics Regression算法的模型中使用的是特征的线性组合,最终得到的分隔超平面属于线性模型,其只能处理线性可分的二分类问题,现实生活 ...
随机推荐
- python简单爬虫(爬取pornhub特定关键词的items图片集)
请提前搭好梯子,如果没有梯子的话直接403. 1.所用到的包 requests: 和服务器建立连接,请求和接收数据(当然也可以用其他的包,socket之类的,不过requests是最简单好用的) Be ...
- 从 axios 源码中了解到的 Promise 链与请求的取消
axios 中一个请求取消的示例: axios 取消请求的示例代码 import React, { useState, useEffect } from "react"; impo ...
- Linux下beego及beego相关插件安装
Linux下beego及beego相关插件安装 1.下载及配置go环境看见链接: http://golang.org/dl/ 网盘:链接: https://pan.baidu.com/s/1MveUM ...
- raspbian修改swap分区为硬盘上的分区
一直以为raspbian的swap分区和平常装系统时候的swap分区是一样的,最近用u盘插在树莓派上运行后发现这个交换分区和我想象中不一样. 百度后发现它是一个文件挂上去的.直接搞把! pi@rasp ...
- [动态规划]高数Umaru系列(9)——哈士奇(背包问题)
高数Umaru系列(9)——哈士奇 http://acm.sdut.edu.cn/onlinejudge2/index.php/Home/Index/problemdetail/pid/3358.ht ...
- 对BUG的分析与理解
对BUG的分析与理解 bug的分类 bug,其实就是软件期望的行为与实际行为的差异.从程序的角度来看,在软件整个生命周期中都会有bug的出现.需求分析过程中,需求理解的不足,导致的理解错位 ,遗漏甚至 ...
- request.getAttribute()和request.getParameter()
request.getParameter()取得是通过容器的实现来取得通过类似post,get等方式传入的数据,request.setAttribute()和getAttribute()只是在web容 ...
- docker镜像命令使用
创建docker容器时使用的docker镜像如果在本地中不存在,docker就会自动从docker镜像仓库中下载,默认的docker镜像仓库是Docker Hub公共镜像源 使用docker sear ...
- link 和 @import 的区别是什么?
link语法结构: <link href="url" rel="stylesheet" type="text/css"> @im ...
- Formform
知识预览 一 Django的form组件 二 Django的model form组件 三 Django的缓存机制 四 Django的信号 五 Django的序列化 回到顶部 一 Django的form ...