CF985C Liebig's Barrels 贪心 第二十
2 seconds
256 megabytes
standard input
standard output
You have m = n·k wooden staves. The i-th stave has length ai. You have to assemble n barrels consisting of k staves each, you can use any k staves to construct a barrel. Each stave must belong to exactly one barrel.
Let volume vj of barrel j be equal to the length of the minimal stave in it.

You want to assemble exactly n barrels with the maximal total sum of volumes. But you have to make them equal enough, so a difference between volumes of any pair of the resulting barrels must not exceed l, i.e. |vx - vy| ≤ l for any 1 ≤ x ≤ n and 1 ≤ y ≤ n.
Print maximal total sum of volumes of equal enough barrels or 0 if it's impossible to satisfy the condition above.
The first line contains three space-separated integers n, k and l (1 ≤ n, k ≤ 105, 1 ≤ n·k ≤ 105, 0 ≤ l ≤ 109).
The second line contains m = n·k space-separated integers a1, a2, ..., am (1 ≤ ai ≤ 109) — lengths of staves.
Print single integer — maximal total sum of the volumes of barrels or 0 if it's impossible to construct exactly n barrels satisfying the condition |vx - vy| ≤ l for any 1 ≤ x ≤ n and 1 ≤ y ≤ n.
4 2 1
2 2 1 2 3 2 2 3
7
2 1 0
10 10
20
1 2 1
5 2
2
3 2 1
1 2 3 4 5 6
0
In the first example you can form the following barrels: [1, 2], [2, 2], [2, 3], [2, 3].
In the second example you can form the following barrels: [10], [10].
In the third example you can form the following barrels: [2, 5].
In the fourth example difference between volumes of barrels in any partition is at least 2 so it is impossible to make barrels equal enough.
题意:输入 n k l 你要做n个桶,每个桶需要k个木板,用木板拼好的桶相互之间体积的差距<=l,桶的体积大小就是最短的那根木板的长度大小。
第二行 共n*k个数,分别表示n*k个木板的长度。
开始自己的思路是对的,但是中间的具体细节写错了,wa了好几发
然后看的别人的博客才写出来的
http://www.mamicode.com/info-detail-2309549.html
分析:
先对边排个序
不存在的情况,就是a[n]-a[1]>l,那就是不存在,因为要是差距尽可能小,前n小的都分别作为n个桶的一块木板,那么这之中最大的差距就是a[n]-a[1],要是a[n]-a[1]都满足条件(<=l)了,那就满足条件了。
其次,要使体积和最大输出体积和,我毛想想觉得s=a[1]+……a[n],结果WA了,引起了我的深思。
因为:
eg:4 3 17
1 2 3 5 9 13 18 21 22 23 25 26
它可以这样组3组:
18 25 26
13 22 23
1 2 3
5 9 21
这样体积为1+5+13+18=37,不是简单地1 +2 +3 +5=11
所以我的思路:先要找到最大的满足条件的数,可以用二分找更快,在这组样例中,是18,它-a[1]<=l,
那么从最后开始去k-1个和18拼,s+=18,再下一个数13(25 26),再从最后找k-1个数(22 23),
再下一个数9,发现再k-1个数不够了,那就从头开始找了,(1 2 3)一组,在去(5 9 13)时,发现13
已经被取走,那就s+=5就可以了。
#include <map>
#include <set>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <string>
#include <cstring>
#include <iostream>
#include <algorithm>
#define debug(a) cout << #a << " " << a << endl
using namespace std;
const int maxn = 1e5 + ;
const int mod = 1e9 + ;
typedef long long ll;
ll a[maxn];
int main(){
std::ios::sync_with_stdio(false);
ll n, k, m;
while( cin >> n >> k >> m ) {
for( ll i = ; i <= n*k; i ++ ) {
cin >> a[i];
}
sort( a + , a + n*k + );
ll num = -;
for( ll i = n*k; i >= n; i -- ) {
if( a[i] - a[] <= m ) {
num = i;
break;
}
}
if( num == - ) {
cout << << endl;
continue;
}
ll sum = , j = num, t = ;
for( ll i = n*k ; i - ( k- ) > num; i = i - ( k- ) ) {
sum += a[j--];
t ++;
}
for( ll i = ; i < num - t + ; i += k ) {
sum += a[i];
}
cout << sum << endl;
}
return ;
}
CF985C Liebig's Barrels 贪心 第二十的更多相关文章
- codeforce 985C Liebig's Barrels(贪心+思维)
Liebig's Barrels time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...
- Codeforce Div-2 985 C. Liebig's Barrels
http://codeforces.com/contest/985/problem/C C. Liebig's Barrels time limit per test 2 seconds memory ...
- Kali Linux Web 渗透测试视频教—第二十课-利用kali linux光盘或者usb启动盘破解windows密码
Kali Linux Web 渗透测试视频教—第二十课-利用kali linux光盘或者usb启动盘破解windows密码 文/玄魂 目录 Kali Linux Web 渗透测试视频教—第二十课-利用 ...
- Kali Linux Web 渗透测试— 第二十课-metasploit.meterpreter
Kali Linux Web 渗透测试— 第二十课-metasploit.meterpreter 原文链接:http://www.xuanhun521.com/Blog/7fc11b7a-b6cb-4 ...
- NeHe OpenGL教程 第二十九课:Blt函数
转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...
- NeHe OpenGL教程 第二十八课:贝塞尔曲面
转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...
- NeHe OpenGL教程 第二十六课:反射
转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...
- NeHe OpenGL教程 第二十五课:变形
转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...
- NeHe OpenGL教程 第二十四课:扩展
转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...
随机推荐
- Jenkins 持续集成持续发布使用搭建基础
一.环境搭建基础 1.持续集成.持续交付.持续部署概念 ①.集成: 是指软件多人研发的部分软件代码整合交付,以便尽早发现个人开发部分的问题:持续集成:强调开发人员提交了新代码之后,立刻进行构建(单元) ...
- centos开发环境安装
执行 yum install gcc gcc-c++ gcc-g77 flex bison autoconf automake bzip2-devel zlib-devel ncurses-devel ...
- 【Java例题】5.3 字符统计
3.分别统计一个字符串中大写字母.小写字母.数字. 汉字以及其它字符的个数. package chapter5; import java.util.Scanner; public class demo ...
- CentOS 7服务器安装brook和bbr加速
一.安装Brook 执行一键部署脚本 $ wget -N --no-check-certificate wget -N --no-check-certificate https://raw.githu ...
- Netty学习(九)-Netty编解码技术之Marshalling
前面我们讲过protobuf的使用,主流的编解码框架其实还有很多种: ①JBoss的Marshalling包 ②google的Protobuf ③基于Protobuf的Kyro ④Apache的Thr ...
- JavaWeb——使用会话维持状态
1.会话的作用 使用会话是为了维持状态,维持的是请求域请求之间的状态.因为HTTP请求自身是完全无状态的.从服务器的角度来看,当用户发出第一个请求开始,服务器无法将新的请求与之前的请求关联起来,举例说 ...
- SonarQube系列二、分析dotnet core/C#代码
[前言] 本系列主要讲述sonarqube的安装部署以及如何集成jenkins自动化分析.netcore项目.目录如下: SonarQube系列一.Linux安装与部署 SonarQube系列二.分析 ...
- 从零开始学习springboot之热部署的配置
各位看官大家好,博主之前因为毕业设计以及毕业旅游耽搁了好长一段时间没有更新博客了,从今天起又会慢慢开始学习啦. 今天主要是来学习springboot热部署的配置. 一. 热部署 我们通常在修改某些文件 ...
- Javascript十大排序算法的实现方法
上一篇中,实现了Javascript中的冒泡排序方法,下面把剩余的九种排序算法实现 选择排序: var array = []; for(var i=0;i<100000;i++){ var x ...
- java并发系列 - 第28天:实战篇,微服务日志的伤痛,一并帮你解决掉
这是java高并发系列第28篇文章. 环境:jdk1.8. 本文内容 日志有什么用? 日志存在的痛点? 构建日志系统 日志有什么用? 系统出现故障的时候,可以通过日志信息快速定位问题,修复bug,恢复 ...