错误率

在常见的具体机器学习算法模型中,一般都使用错误率来优化loss function来保证模型达到最优。
\[错误率=\frac{分类错误的样本}{样本总数}\]
\[error=\frac{1}{m} \sum_{i=1}^{m} I(f(x_{i})\neq y_{i})\]

但是错误率有一个严重的缺点:
错误率会掩盖样本如何被错误分类事实,这样对于有的问题很难进行下一步的分析

混淆矩阵 confusion matrix

真正例: True Positive
真反例: True Negative
假正例: False Positive
假反例: False Negative

下面是一个二分类的混淆矩阵:

真实情况 预测 结果
正例 反例
正例 TP(真正) FN(假反)
反例 FP(假正) TN(真反)

查准率(正确率):
\[precision=\frac{真正正确的个数}{分类中正确的个数}\]
\[P=\frac{TP}{TP+FP}\]

查全率(召回率):
\[recall=\frac{预测为正确的个数}{真实情况正确的个数}\]
\[R=\frac{TP}{TP+FN}\]

综合考虑查准率和查全率的性能度量

F1:
F1是基于查全率和查准率的调和平均(harmonic mean)定义的
\[\frac{1}{F_{1}}=\frac{1}{2}(\frac{1}{P}+\frac{1}{R})\]
\[\frac{1}{F_{1}}=\frac{2*P*R}{P+R}=\frac{2*TP}{总样本树+TP-TN}\]

度量分类中非均衡分类问题 ROC 与AUC

ROC:receiver operating characteristic 受试者工作特征
横坐标:假正例率
\[FPR=\frac{FP}{FP+TN}\]
纵坐标:真正例率 就是回归率
\[TPR=\frac{TP}{TP+FN}\]

图形绘制过程:西瓜书 2.3.3 p34
一共有 \(m^{+}\)个正例,\(m^{-}\)个反例

  • 1.先将样例按照学习器的预测结果进行排序
  • 2.将分类阈值设置为最大,这样所有的样例都预测为反例。这就是图形的左下点(0,0)
  • 3.将分类阈值设置为每个预测结果值,依次将每个样例预测为正例
  • 4.假设前一个标记点坐标(x,y).如果当前例为TP,则对应标记点的坐标为\((x,y+\frac{1}{m^{+}})\) 如果当前例为FP,则对应标记点坐标为\((x+\frac{1}{m^{-}},y)\)

不同的ROC曲线根据AUC来进行比较
AUC:area under ROC curve
可根据微积分的定义来求解:
\[AUC=\frac{1}{2} \sum_{i=1}^{m-1}(x_{i+1}-x_{i}(y_{i}+y_{i+1}))\]

机器学习性能度量指标:ROC曲线、查准率、查全率、F1的更多相关文章

  1. 机器学习性能度量指标:AUC

    在IJCAI 于2015年举办的竞赛:Repeat Buyers Prediction Competition 中, 很多参赛队伍在最终的Slides展示中都表示使用了 AUC 作为评估指标:     ...

  2. 【Udacity】机器学习性能评估指标

    评估指标 Evaluation metrics 机器学习性能评估指标 选择合适的指标 分类与回归的不同性能指标 分类的指标(准确率.精确率.召回率和 F 分数) 回归的指标(平均绝对误差和均方误差) ...

  3. 【sklearn】性能度量指标之ROC曲线(二分类)

    原创博文,转载请注明出处! 1.ROC曲线介绍 ROC曲线适用场景 二分类任务中,positive和negtive同样重要时,适合用ROC曲线评价 ROC曲线的意义 TPR的增长是以FPR的增长为代价 ...

  4. [机器学习] 性能评估指标(精确率、召回率、ROC、AUC)

    混淆矩阵 介绍这些概念之前先来介绍一个概念:混淆矩阵(confusion matrix).对于 k 元分类,其实它就是一个k x k的表格,用来记录分类器的预测结果.对于常见的二元分类,它的混淆矩阵是 ...

  5. 机器学习实战笔记(Python实现)-07-分类性能度量指标

    1.混淆矩阵 下图是一个二类问题的混淆矩阵,其中的输出采用了不同的类别标签 常用的衡量分类性能的指标有: 正确率(Precision),它等于 TP/(TP+FP) ,给出的是预测为正例的样本中的真正 ...

  6. 机器学习性能评估指标(精确率、召回率、ROC、AUC)

    http://blog.csdn.net/u012089317/article/details/52156514 ,y^)=1nsamples∑i=1nsamples(yi−y^i)2

  7. 衡量镜头解像能力性能的指标-MTF曲线

    MTF(Modulation Transfer Function,模量传递函数),是目前分析镜头解像能力的方法,可以用来评判镜头还原物体对比度的能力.说到MTF,不得不先提一下衡量镜头性能的两在重要指 ...

  8. ROC曲线,AUC面积

    AUC(Area under Curve):Roc曲线下的面积,介于0.1和1之间.Auc作为数值可以直观的评价分类器的好坏,值越大越好. 首先AUC值是一个概率值,当你随机挑选一个正样本以及负样本, ...

  9. 评价指标的局限性、ROC曲线、余弦距离、A/B测试、模型评估的方法、超参数调优、过拟合与欠拟合

    1.评价指标的局限性 问题1 准确性的局限性 准确率是分类问题中最简单也是最直观的评价指标,但存在明显的缺陷.比如,当负样本占99%时,分类器把所有样本都预测为负样本也可以获得99%的准确率.所以,当 ...

随机推荐

  1. PyCharm字体大小调整

    1.点击左上角File----settings----keymap----------搜索increase,选中,increase font size--------再选择enter mouse sh ...

  2. 敏捷和DevOps:是敌是友?

    DevOps是敏捷在软件开发团队的另一应用.那么相比之下,哪个更胜一筹? 一边,有业界认可的scrum master,它的朋友极限编程者,以及由其衍生的 LeSS.SAFe.DAD等,是敏捷. 另一边 ...

  3. sass的核心知识及使用

    sass的官方链接地址:htpp://sass-lang.com 参考链接地址:http://www.haorooms.com/post/sass_css 1. 基础语法 1.1 变量 SASS允许使 ...

  4. spark 源码分析之二十二-- Task的内存管理

    问题的提出 本篇文章将回答如下问题: 1.  spark任务在执行的时候,其内存是如何管理的? 2. 堆内内存的寻址是如何设计的?是如何避免由于JVM的GC的存在引起的内存地址变化的?其内部的内存缓存 ...

  5. Eclipse Other Projects小问题

    Eclipse 不知什么时候多了个 "Other Projects" 文件夹,所有的项目又多了一层目录,如图所示: 虽然对功能没任何影响,但每次打开有些麻烦,多少感觉有些不爽…… ...

  6. Linux进程间通信——信号

    一.认识信号 信号(Signals)是Unix.类Unix以及其他POSIX兼容的操作系统中进程间通讯的一种有限制的方式.它是一种异步的通知机制,用来提醒进程一个事件已经发生.当一个信号发送给一个进程 ...

  7. middleware中间件

    django 中的中间件(middleware),在django中,中间件其实就是一个类,在请求到来和结束后,django会根据自己的规则在合适的时机执行中间件中相应的方法. 在django项目的se ...

  8. Python基础总结之认识lambda函数、map函数、filter() 函数。第十二天开始(新手可相互督促)

    今天周日,白天在学习,晚上更新一些笔记,希望对大家能更好的理解.学习python~ lambda函数,也就是大家说的匿名函数.它没有具体的名称,也可以叫做一句话函数,我觉得也不过分,大家看下代码,来体 ...

  9. Ok-Http | Android 网络请求框架使用方式

    POST : package he3.sd.util; import com.parkingwang.okhttp3.LogInterceptor.LogInterceptor; import jav ...

  10. mysql复制那点事(2)-binlog组提交源码分析和实现

    mysql复制那点事(2)-binlog组提交源码分析和实现 [TOC] 0. 参考文献 序号 文献 1 MySQL 5.7 MTS源码分析 2 MySQL 组提交 3 MySQL Redo/Binl ...