也许更好的阅读体验

\(\mathcal{Description}\)

有 \(n\) 堆石子,依次编号为 \(1, 2,\ldots , n\),其中第 \(i\) 堆有 \(a_i\) 颗石子

你每次在仍然有石子的石子堆中等概率随机选择一堆石子,并取走其中一颗石子

求第 \(1\) 堆石子被取走的时间的期望

\(n\leq 5\times 10^5,a_i\leq 5\times 10^5\)

\(\mathcal{Solution}\)

这题其实也不难,然而也不是考虑\(DP\),和stone一样

问题要求的实际就是在第\(1\)堆石子被取完之前,总共有多少个石子被拿走了

显然\(a_1\)被拿完了,再考虑期望的线性性,由于你取走其他堆石子对当前堆没有影响,可以单独考虑每一堆石子被取了多少个

先考虑\(a_i\)没有全部被取完

假设第\(i\)堆石子被取走了\(x\left(0\leq x\leq a_i-1\right)\)颗石子,因为第\(i\)堆石子没被取完,而没有继续被取走肯定是因为第\(1\)堆石子被取完了

设\(1\)为从第一堆石子中取一颗石子,\(0\)为从第二堆石子中取一颗石子

那么方案数就是有\(a_1\)个\(1\)和\(x\)个\(0\)的长度为\(a_1+x\)的且最后一位是\(1\)的二进制串的个数

则有\(\begin{pmatrix}a_1+x-1 \\ x\end{pmatrix}\)种方案数,总方案数为\(2^{a_1+x}\),那么概率就是\(p_x=\frac{\begin{pmatrix}a_1+x-1\\ x\end{pmatrix}}{2^{a_1+x}}\)

若\(x=a_i\),这个看起来没原来那么好算了,想到这两种情况的概率加起来应该等于\(1\),所以这种情况的概率就是\(q=1-\sum\limits_{j=0}^{a_i-1}p_j\)

则我们得到\(E_i=\sum\limits_{j=0}^{a_i-1}j*p_j+qa_i\)

总期望就是\(E=\sum\limits_{i=2}^nE_i\),写复杂点就是

\(E=\left(\sum\limits_{i=2}^n\left(\sum\limits_{j=0}^{a_i-1}j*\frac{\begin{pmatrix}a_1+j-1 \\ j\end{pmatrix}}{2^{a_1+j}}\right)+a_i\left(1-\sum\limits_{j=0}^{a_i-1}\frac{\begin{pmatrix}a_1+j-1 \\ j\end{pmatrix}}{2^{a_1+j}}\right)\right)+a_1\)

这个东西怎么维护呢,直接考虑\(a_i\)变成\(a_i+1\)的情况,我们考虑里面那个\(\sum\)的变化,实际上只有枚举上界增大\(1\)变成了\(a_i\)我们直接对\(a_i\)的所有取值的答案都预处理出来就行了

\(\mathcal{Code}\)

/*******************************
Author:Morning_Glory
LANG:C++
Created Time:2019年11月08日 星期五 16时20分30秒
*******************************/
#include <cstdio>
#include <fstream>
using namespace std;
const int maxn = 1000006;
const int lim = 1000000;
const int h = 500000;
const int mod = 323232323;
//cin为我打的快读板子,详细内容可去看以前的代码,总是在这里写感觉有点影响阅读
int n,p,ans,a;
int fac[maxn],ifac[maxn],inv[maxn],mi[maxn],f[maxn],g[maxn];
int C (int n,int m){ return 1ll*fac[n]*ifac[n-m]%mod*ifac[m]%mod;}
int main()
{
fac[0]=ifac[0]=mi[0]=inv[1]=1;
for (int i=2;i<=lim;++i) inv[i]=(mod-1ll*mod/i*inv[mod%i]%mod);
for (int i=1;i<=lim;++i) fac[i]=1ll*fac[i-1]*i%mod,ifac[i]=1ll*ifac[i-1]*inv[i]%mod,mi[i]=1ll*mi[i-1]*inv[2]%mod; cin>>n>>a;
ans=a; //枚举上界为i
g[0]=mi[a];
for (int i=1;i<=h;++i){
int p=1ll*C(a+i-1,i)*mi[a+i]%mod;
f[i]=(f[i-1]+1ll*i*p%mod)%mod;
g[i]=(g[i-1]+p)%mod;
} //石子数为i的答案
for (int i=h;i>=1;--i) f[i]=(f[i-1]+1ll*i*(mod+1-g[i-1])%mod)%mod; for (int i=2;i<=n;++i) cin>>a,ans=(ans+f[a])%mod; printf("%d\n",ans);
return 0;
}

如有哪里讲得不是很明白或是有错误,欢迎指正

如您喜欢的话不妨点个赞收藏一下吧

stone2 [期望]的更多相关文章

  1. 【BZOJ-3143】游走 高斯消元 + 概率期望

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2264  Solved: 987[Submit][Status] ...

  2. bzoj1415[NOI2005]聪聪和可可-期望的线性性

    这道题之前我写过一个巨逗比的写法(传送门:http://www.cnblogs.com/liu-runda/p/6220381.html) 当时的原因是这道题可以抽象出和"绿豆蛙的归宿&qu ...

  3. hdu 4481 Time travel(高斯求期望)(转)

    (转)http://blog.csdn.net/u013081425/article/details/39240021 http://acm.hdu.edu.cn/showproblem.php?pi ...

  4. 【BZOJ3036】绿豆蛙的归宿 概率与期望

    最水的概率期望,推荐算法合集之<浅析竞赛中一类数学期望问题的解决方法> #include <iostream> #include <cstdio> using na ...

  5. UVA&&POJ离散概率与数学期望入门练习[4]

    POJ3869 Headshot 题意:给出左轮手枪的子弹序列,打了一枪没子弹,要使下一枪也没子弹概率最大应该rotate还是shoot 条件概率,|00|/(|00|+|01|)和|0|/n谁大的问 ...

  6. 【BZOJ-1426】收集邮票 概率与期望DP

    1426: 收集邮票 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 261  Solved: 209[Submit][Status][Discuss] ...

  7. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  8. [NOIP2016]换教室 D1 T3 Floyed+期望DP

    [NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...

  9. 关于在left join的on子句中限制左边表的取值时出现非期望的结果

    使用的SQL大概是这样的: select * from A left join B on A.id=B.id and A.id>10; --错误的使用 我们期望的结果集应该是 A中的id> ...

随机推荐

  1. [CMS] UsualToolCMS-8.0 sql注入漏洞【转载】

    原文地址:http://lyscholar.cn/2019/07/30/代码审计-usualtoolcms存在sql注入漏洞/ 0x01 漏洞环境 版本信息:UsualToolCMS-8.0-Rele ...

  2. Ubuntu 16.04 一系列软件安装命令,包括QQ、搜狗、Chrome、vlc、网易云音乐安装方法

    1 简介 Ubuntu 16.04安装完后,还需要做一些配置才能愉快的使用,包括添加软件源.安装搜狗输入法.Chrome浏览器.网易云音乐.配置快捷键.安装git等等,下面就跟着我来配置吧,just ...

  3. hotspot的Heap Memory和Native Memory

    JVM管理的内存可以总体划分为两部分:Heap Memory和Native Memory.前者供Java应用程序使用的:后者也称为C-Heap,是供JVM自身进程使用的.Native Memory没有 ...

  4. IntelliJ IDEA 2019从入门到癫狂 图文教程!

    阅读本文大概需要 6 分钟. 作者:yizhiwazi 来源:www.jianshu.com/p/9c65b7613c30 前言:IntelliJ IDEA 如果说IntelliJ IDEA是一款现代 ...

  5. jemalloc内存分配原理【转】

    原文:http://www.cnblogs.com/gaoxing/p/4253833.html 内存分配是面向虚拟内存的而言的,以页为单位进行管理的,页的大小一般为4kb,当在堆里创建一个对象时(小 ...

  6. 【技术博客】 关于laravel5.1中文件上传测试的若干尝试

    关于laravel5.1中文件上传测试的若干尝试 作者:ZGJ 版本:v1.0 PM注:本人这两天也正在尝试解决这一问题,如有进展将及时更新这一博客 在我们的软工第二阶段中,我开始着手进行后端控制器的 ...

  7. Gamma阶段第三次scrum meeting

    每日任务内容 队员 昨日完成任务 明日要完成的任务 张圆宁 #91 用户体验与优化https://github.com/rRetr0Git/rateMyCourse/issues/91(持续完成) # ...

  8. UE运行sas配置-WIN10

    1.在UE中配置SAS运行的工具: UE--高级---用户工具--工具配置 在命令行输入"D:\soft\SASHome\SASFoundation\9.4\sas.exe" -c ...

  9. 线程:Java中wait、notify、notifyAll使用详解

    基础知识 首先我们需要知道,这几个都是Object对象的方法.换言之,Java中所有的对象都有这些方法. public final native void notify(); public final ...

  10. SonarQube7.4安装和使用

    声明 本文转自:https://www.jianshu.com/p/dd4a4bc59fc3?from=singlemessage 正文 近期比较关注代码的检测,之前由于用的findbugs,因此没有 ...