题目大意:给你一个有$n$个盘子的汉诺塔状态$S$,问有多少种不同的操作方法,使得可以在$m$步以内到达状态$T$。$n,m\leqslant100$

题解:首先可以知道的是,一个状态最多可以转移到其他的$3$个状态,然后发现若$m\leqslant100$的话,每个柱子最多移动$7$个盘子,所以最多状态只有$3^{21}$次,这个数可能有点大,但是通过更严密的分析的话,最后状态数只有$10^5$级别,可以通过记忆化搜索通过。

卡点:妈啊,我怎么又把柱子上的顺序弄反了

C++ Code:

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <vector>
#include <map>
const int mod = 998244353;
inline void reduce(int &x) { x += x >> 31 & mod; } int n, m, ans;
std::vector<int> S, T, v[3];
std::map<std::vector<int>, int> f[105];
int dfs(int x, std::vector<int> S, std::vector<int> *v) {
if (f[x].count(S)) return f[x][S];
if (!x) return 0;
int &F = f[x][S];
for (int i = 0; i < 3; ++i) if (v[i].size())
for (int j = 0; j < 3; ++j)
if (!v[j].size() || v[i].back() < v[j].back()) {
S[v[i].back()] = j;
v[j].push_back(v[i].back()), v[i].pop_back();
reduce(F += dfs(x - 1, S, v) - mod);
S[v[j].back()] = i;
v[i].push_back(v[j].back()), v[j].pop_back();
}
return F;
}
int main() {
std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
std::cin >> n >> m;
for (int i = 0, x; i < n; ++i) std::cin >> x, S.push_back(--x);
for (int i = 0, x; i < n; ++i) std::cin >> x, T.push_back(--x);
for (int i = n - 1; ~i; --i) v[T[i]].push_back(i);
f[0][S] = 1;
for (int i = 0; i <= m; ++i) reduce(ans += dfs(i, T, v) - mod);
std::cout << ans << '\n';
return 0;
}

  

[UOJ #167]【UR #11】元旦老人与汉诺塔的更多相关文章

  1. UR11 A.元旦老人与汉诺塔

    题目:http://uoj.ac/contest/23/problem/167 如果我们拿个map来存状态的话.设当前状态是v,下一个状态是s.有f[i+1][s]+=f[i][v]. 初始f[0][ ...

  2. uoj167 元旦老人与汉诺塔(记忆化搜索)

    QwQ太懒了,题目直接复制uoj的了 QwQ这个题可以说是十分玄学的一道题了 首先可以暴搜,就是\(dfs\)然后模拟每个过程是哪个柱子向哪个柱子移动 不多解释了,不过实现起来还是有一点点难度的 直接 ...

  3. UVA 10254 - The Priest Mathematician (dp | 汉诺塔 | 找规律 | 大数)

    本文出自   http://blog.csdn.net/shuangde800 题目点击打开链接 题意: 汉诺塔游戏请看 百度百科 正常的汉诺塔游戏是只有3个柱子,并且如果有n个圆盘,至少需要2^n- ...

  4. 汉诺塔VII(递推,模拟)

    汉诺塔VII Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submis ...

  5. C语言数据结构----递归的应用(斐波拉契数列、汉诺塔、strlen的递归算法)

    本节主要说了递归的设计和算法实现,以及递归的基本例程斐波拉契数列.strlen的递归解法.汉诺塔和全排列递归算法. 一.递归的设计和实现 1.递归从实质上是一种数学的解决问题的思维,是一种分而治之的思 ...

  6. python 游戏 —— 汉诺塔(Hanoita)

    python 游戏 —— 汉诺塔(Hanoita) 一.汉诺塔问题 1. 问题来源 问题源于印度的一个古老传说,大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆 ...

  7. 汉诺塔问题(Hanoi Tower)递归算法解析(Python实现)

    汉诺塔问题 1.问题来源:汉诺塔来源于印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从上往下从小到大顺序摞着64片黄金圆盘.上帝命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根 ...

  8. HDU 2587 - 很O_O的汉诺塔

    看题传送门 吐槽题目 叫什么很O_O的汉诺塔我还@.@呢. 本来是想过一段时间在来写题解的,不过有人找我要. 本来排名是第8的.然后搞了半天,弄到了第五.不过代码最短~ 截止目前就9个ID过,小小的成 ...

  9. JAVA——汉诺塔

    大家还记得某年春晚小品那个把大象放冰箱需要几步吗? 今天,我准备写的是汉诺塔,有三个魔法石柱,分别:诚实.勇敢.正直.其中有一个石柱上从大到小,从地向上依次排放着四个魔法圆环,需要将那四个魔法圆环分别 ...

随机推荐

  1. Codevs 2800 送外卖(状压DP)

    2800 送外卖 时间限制: 2 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 有一个送外卖的,他手上有n份订单,他要把n份东西,分别送达n ...

  2. Processing设计Android APP(1) - 安装

    1.安装环境: A. Android Studio B. Processing 3.4 (64bit) 首先,直接安装Android Studio,我这里版本是3.2.1. 然后,新建一个Sample ...

  3. javascript 之正则表达式匹配不包含特定字符串的字符

    如:有如下字符串,想查出不包含min.js的字符串  ['xx.min.js','xx.js','x.js','x.min.js'] 方法一: 使用逻辑非判断, !/min\.js/.test(str ...

  4. (11)Go方法/接收者

    方法和接收者 Go语言中的方法(Method)是一种作用于特定类型变量的函数.这种特定类型变量叫做接收者(Receiver).接收者的概念就类似于其他语言中的this或者 self. 方法的定义格式如 ...

  5. 改进欧拉公式求解常微分方程(c++)

    #include<iostream> #include<iomanip> using namespace std; int main() { double x,y,h,temp ...

  6. Edusoho之Basic Authentication

    通过如下代码,可以正常请求并获取对应的数据: curl -X POST -H "Accept:application/vnd.edusoho.v2+json" -H "A ...

  7. 【翻译】可能是CAP理论的最好解释

    一篇非常精彩的解释CAP理论的文章,翻译水平有限,不准确之处请参考原文,还请见谅. Chapter 1: “Remembrance Inc” Your new venture : Last night ...

  8. MySQL实现按天分组统计,提供完整日期列表,无数据自动补0

    业务需求最近要在系统中加个统计功能,要求是按指定日期范围里按天分组统计数据量,并且要能够查看该时间段内每天的数据量. 解决思路直接按数据表日期字段group by统计,发现如果某天没数据,该日期是不出 ...

  9. USB安装ESXi出错,menu.c32 not a com32r image

    USB安装EXSi出错,menu.c32 not a com32r image 不能进入安装界面. 提供提取的menu.c32 下载下来覆盖U盘根目录源文件 EXSi6.7测试可以用 文件csdn下载 ...

  10. Linux 常用操作和命令

    腾讯云部署 java web 环境:https://blog.csdn.net/niceLiuSir/article/details/78879844 Tomcat部署和配置:https://blog ...