[UOJ #167]【UR #11】元旦老人与汉诺塔
题目大意:给你一个有$n$个盘子的汉诺塔状态$S$,问有多少种不同的操作方法,使得可以在$m$步以内到达状态$T$。$n,m\leqslant100$
题解:首先可以知道的是,一个状态最多可以转移到其他的$3$个状态,然后发现若$m\leqslant100$的话,每个柱子最多移动$7$个盘子,所以最多状态只有$3^{21}$次,这个数可能有点大,但是通过更严密的分析的话,最后状态数只有$10^5$级别,可以通过记忆化搜索通过。
卡点:妈啊,我怎么又把柱子上的顺序弄反了
C++ Code:
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <vector>
#include <map>
const int mod = 998244353;
inline void reduce(int &x) { x += x >> 31 & mod; } int n, m, ans;
std::vector<int> S, T, v[3];
std::map<std::vector<int>, int> f[105];
int dfs(int x, std::vector<int> S, std::vector<int> *v) {
if (f[x].count(S)) return f[x][S];
if (!x) return 0;
int &F = f[x][S];
for (int i = 0; i < 3; ++i) if (v[i].size())
for (int j = 0; j < 3; ++j)
if (!v[j].size() || v[i].back() < v[j].back()) {
S[v[i].back()] = j;
v[j].push_back(v[i].back()), v[i].pop_back();
reduce(F += dfs(x - 1, S, v) - mod);
S[v[j].back()] = i;
v[i].push_back(v[j].back()), v[j].pop_back();
}
return F;
}
int main() {
std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
std::cin >> n >> m;
for (int i = 0, x; i < n; ++i) std::cin >> x, S.push_back(--x);
for (int i = 0, x; i < n; ++i) std::cin >> x, T.push_back(--x);
for (int i = n - 1; ~i; --i) v[T[i]].push_back(i);
f[0][S] = 1;
for (int i = 0; i <= m; ++i) reduce(ans += dfs(i, T, v) - mod);
std::cout << ans << '\n';
return 0;
}
[UOJ #167]【UR #11】元旦老人与汉诺塔的更多相关文章
- UR11 A.元旦老人与汉诺塔
题目:http://uoj.ac/contest/23/problem/167 如果我们拿个map来存状态的话.设当前状态是v,下一个状态是s.有f[i+1][s]+=f[i][v]. 初始f[0][ ...
- uoj167 元旦老人与汉诺塔(记忆化搜索)
QwQ太懒了,题目直接复制uoj的了 QwQ这个题可以说是十分玄学的一道题了 首先可以暴搜,就是\(dfs\)然后模拟每个过程是哪个柱子向哪个柱子移动 不多解释了,不过实现起来还是有一点点难度的 直接 ...
- UVA 10254 - The Priest Mathematician (dp | 汉诺塔 | 找规律 | 大数)
本文出自 http://blog.csdn.net/shuangde800 题目点击打开链接 题意: 汉诺塔游戏请看 百度百科 正常的汉诺塔游戏是只有3个柱子,并且如果有n个圆盘,至少需要2^n- ...
- 汉诺塔VII(递推,模拟)
汉诺塔VII Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submis ...
- C语言数据结构----递归的应用(斐波拉契数列、汉诺塔、strlen的递归算法)
本节主要说了递归的设计和算法实现,以及递归的基本例程斐波拉契数列.strlen的递归解法.汉诺塔和全排列递归算法. 一.递归的设计和实现 1.递归从实质上是一种数学的解决问题的思维,是一种分而治之的思 ...
- python 游戏 —— 汉诺塔(Hanoita)
python 游戏 —— 汉诺塔(Hanoita) 一.汉诺塔问题 1. 问题来源 问题源于印度的一个古老传说,大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆 ...
- 汉诺塔问题(Hanoi Tower)递归算法解析(Python实现)
汉诺塔问题 1.问题来源:汉诺塔来源于印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从上往下从小到大顺序摞着64片黄金圆盘.上帝命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根 ...
- HDU 2587 - 很O_O的汉诺塔
看题传送门 吐槽题目 叫什么很O_O的汉诺塔我还@.@呢. 本来是想过一段时间在来写题解的,不过有人找我要. 本来排名是第8的.然后搞了半天,弄到了第五.不过代码最短~ 截止目前就9个ID过,小小的成 ...
- JAVA——汉诺塔
大家还记得某年春晚小品那个把大象放冰箱需要几步吗? 今天,我准备写的是汉诺塔,有三个魔法石柱,分别:诚实.勇敢.正直.其中有一个石柱上从大到小,从地向上依次排放着四个魔法圆环,需要将那四个魔法圆环分别 ...
随机推荐
- 洛谷 P1351 联合权值 题解
P1351 联合权值 题目描述 无向连通图 \(G\) 有 \(n\) 个点,\(n-1\) 条边.点从 \(1\) 到 \(n\) 依次编号,编号为 \(i\) 的点的权值为 \(W_i\),每条 ...
- C++通过迭代修改字符串本身(auto类型说明符)
以字符串这种支持 for (declaration : expression) statement 这样for语句迭代的数据结构为例,我们看看auto关键字在类型推断中的作用. string s = ...
- DML 语言
数据操纵语言(Data Manipulation Language, DML)是SQL语言中,负责对数据库对象运行数据访问工作的指令集. 以INSERT.UPDATE.DELETE三种指令为核心,分别 ...
- springboot注解方式使用redis缓存
引入依赖库 在pom中引入依赖库,如下 <dependency> <groupId>org.springframework.boot</groupId> <a ...
- es6学习2:变量的解构赋值
一:数组的解构赋值 ES6 允许按照一定模式,从数组和对象中提取值,对变量进行赋值,这被称为解构 let [foo, [[bar], baz]] = [1, [[2], 3]]; foo bar ba ...
- ASP.NET MVC5+EF6+EasyUI 后台管理系统-代码生成器用法
新的代码生成器比老的更加容易使用,要生成什么形式就选择什么形式,新的代码生成器采用的是WCF界面开发,同样采用开源的模式,根据自己使用习惯容易扩展 1.单列表模式 2.树形列表模式 3.左右列表模式 ...
- 为什么使用css3和div布局?
1,代码精简(没有本身自带的一些属性,容易设置样式)2,解决了table表格的嵌套问题3,速度问题(页面代码减少,增加了编写代码的速度)4 ,对排名的影响,基于xhtml标准的div+css布局会更快 ...
- Jmeter常用插件:梯度加压/插件管理器
一.Jmeter梯度加压的 jar:Stepping Thread Group,下载方法如下: 1.访问网网站:https://jmeter-plugins.org/downloads/old/ 2. ...
- Solidity truffle,部署合约到Ropsten测试链或主链,调用合约(转)
Solidity truffle,部署合约到Ropsten测试链或主链,调用合约 转 https://blog.csdn.net/houyanhua1/article/details/89010896 ...
- [LeetCode] 678. Valid Parenthesis String 验证括号字符串
Given a string containing only three types of characters: '(', ')' and '*', write a function to chec ...