CF1194F Crossword Expert(数论,组合数学)
不难的一题。不知道为什么能 $2500$……
不过场上推错了一直不会优化……
首先考虑 $f_i$ 表示恰好做完前 $i$ 道题的概率。
这样很难算。修改一下,$f_i$ 表示做完至少 $i$ 道题的概率。
答案就是 $\sum\limits_{i=0}^ni(f_i-f_{i+1})=\sum\limits_{i=1}^nf_i$。
由于每道题只可能多用至多一秒,考虑 $dp[i][j]$ 为前 $i$ 道题恰好SB $j$ 次的概率。
初始状态是 $dp[0][0]=1$。转移是 $dp[i][j]=\dfrac{1}{2}(f[i-1][j]+f[i-1][j-1])$。
盯着式子看不难看出 $dp[i][j]=(\dfrac{1}{2})^i\dbinom{i}{j}$。用实际意义也不难理解。
(场上就是这里推成了 $(\dfrac{1}{2})^{i+j}\dbinom{i+j}{i}$ 就自闭了……)
那么有 $f_i=\sum\limits_{j=0}^{r_i}dp[i][j]=(\dfrac{1}{2})^i\sum\limits_{j=0}^{r_i}\dbinom{i}{j}$。其中 $r_i=T-\sum\limits_{j=1}^it_j$,表示最多允许SB几次。(其实要和 $i$ 取个 $\min$,但是不影响,可以想一想为什么)
问题就是求 $\sum\limits_{j=0}^{r_i}\dbinom{i}{j}$ 了。接下来是一个很妙的做法。
首先 $i=1$ 时直接暴力。
然后 $\sum\limits_{j=0}^{r_i}\dbinom{i+1}{j}=\sum\limits_{j=0}^{r_i}(\dbinom{i}{j}+\dbinom{i}{j-1})=2\sum\limits_{j=0}^{r_i}\dbinom{i}{j}-\dbinom{i}{r_i}$。可以直接递推。
由于 $r_i$ 单调递减,递推完之后把 $r_{i+1}+1$ 到 $r_i$ 的组合数都删掉就行了。
实现优秀一点可以做到 $O(n)$。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=,mod=,inv2=;
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline ll read(){
ll x=,f=;char ch=getchar();
while(ch<'' || ch>'') f|=ch=='-',ch=getchar();
while(ch>='' && ch<='') x=x*+ch-'',ch=getchar();
return f?-x:x;
}
int n,t[maxn],fac[maxn],inv[maxn],invfac[maxn],f[maxn],ans,pro=;
ll r[maxn];
int C(int n,ll m){
if(n<m) return ;
return 1ll*fac[n]*invfac[m]%mod*invfac[n-m]%mod;
}
int main(){
n=read();r[]=read();
FOR(i,,n) t[i]=read();
FOR(i,,n) r[i]=r[i-]-t[i];
fac[]=fac[]=inv[]=invfac[]=invfac[]=;
FOR(i,,n){
fac[i]=1ll*fac[i-]*i%mod;
inv[i]=mod-1ll*(mod/i)*inv[mod%i]%mod;
invfac[i]=1ll*invfac[i-]*inv[i]%mod;
}
FOR(i,,min(1ll,r[])) f[]=(f[]+C(,i))%mod;
FOR(i,,n){
if(r[i]<) break;
f[i]=(2ll*f[i-]-C(i-,r[i-])+mod)%mod;
ROF(j,min<ll>(i,r[i-]),r[i]+) f[i]=(f[i]-C(i,j)+mod)%mod;
}
FOR(i,,n){
if(r[i]<) break;
pro=1ll*pro*inv2%mod;
ans=(ans+1ll*pro*f[i])%mod;
}
printf("%d\n",ans);
}
CF1194F Crossword Expert(数论,组合数学)的更多相关文章
- Codeforces - 1194F - Crossword Expert - 组合数学
https://codeforc.es/contest/1194/problem/F 下面是错的. 看起来有点概率dp的感觉? 给你T秒钟时间,你要按顺序处理总共n个事件,每个事件处理花费的时间是ti ...
- 【CF1194F】Crossword Expert(数学 期望)
题目链接 大意 给你\(N\)个事件,解决每个事件所需的时间有\(1/2\)的概率为\(t[i]\),\(1/2\)的概率为\((t[i]+1)\),给你总时间\(T\),在\(T\)时间内按顺序解决 ...
- 数论 - 组合数学 + 素数分解 --- hdu 2284 : Solve the puzzle, Save the world!
Solve the puzzle, Save the world! Problem Description In the popular TV series Heroes, there is a ta ...
- HDU 4497 数论+组合数学
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4497 解题思路:将满足条件的一组x,z,y都除以G,得到x‘,y',z',满足条件gcd(x',y' ...
- Uva 11076 Add Again (数论+组合数学)
题意:给你N个数,求把他们的全排列加和为多少 思路:对于这道题,假设数字k1在第一位,然后求出剩下N-1位的排列数num1,我们就可以知道k1在第一位时 排列有多少种为kind1, 同理,假设数字k2 ...
- Codeforces Round #447 (Div. 2) B. Ralph And His Magic Field【数论/组合数学】
B. Ralph And His Magic Field time limit per test 1 second memory limit per test 256 megabytes input ...
- Codeforces 223C Partial Sums 数论+组合数学
题意非常easy,求不是那么好求的,k非常大 要操作非常多次,所以不可能直接来的.印象中解决操作比較多无非线段树 循环节 矩阵 组合数等等吧,这道题目 也就仅仅能多画画什么 的了 就以第一个案例为主吧 ...
- Crossword Expert CodeForces - 1194F (期望)
大意: $n$个题, 按照第$i$题随机$t_i$或$t_i+1$秒钟完成, 最多做$T$秒, 求做题数期望. 期望转为做题数$\ge x$的方案数之和最后再除以总方案数 这是因为$\sum\limi ...
- Codeforces 1194F. Crossword Expert
传送门 考虑每一个位置的期望贡献 $P[i]$ 对于第 $k$ 个位置,设 $sum=\sum_{i=1}^{k}t[k]$,那么 $T-sum$ 即为用最短时间完成完位置 $k$ 后多出来的空闲时间 ...
随机推荐
- LeetCode 234:回文链表 Palindrome Linked List
请判断一个链表是否为回文链表. Given a singly linked list, determine if it is a palindrome. 示例 1: 输入: 1->2 输出: ...
- 将服务器时间类型改为UTC(0000)
方法一: # timedatectl set-timezone UTC # timedatectl set-time "YYYY-MM-DD HH:MM:SS" # time ...
- JavaScript的__proto__、prototype和继承
JavaScript也是可以“继承”的! 各位看官或是好奇,或是一知半解.什么是prototype,__proto__,constructor.哪种继承方式好.今天就在这交流交流. 什么是protot ...
- 【mysql】Mysql的profile的使用 --- Profilling mysql的性能分析工具
分析SQL执行带来的开销是优化SQL的重要手段. 在MySQL数据库中,可以通过配置profiling参数来启用SQL剖析.该参数可以在全局和session级别来设置.对于全局级别则作用于整个MySQ ...
- 【git】git命令集合
[在包含.git目录所在的项目根目录下,打开git Bash] 参考地址:https://www.cnblogs.com/sxdcgaq8080/p/11655170.html =========== ...
- GAC 解释&路径
GAC 全称是 Global Assembly Cache 作用是可以存放一些有很多程序都要用到的公共 Assembly ,例如 System.Data .System.Windows.Form 等等 ...
- Oracle - 数字处理 - 取上取整、向下取整、保留N位小数、四舍五入、数字格式化
用oracle sql对数字进行操作: 取上取整.向下取整.保留N位小数.四舍五入.数字格式化 取整(向下取整): select floor(5.534) from dual; select trun ...
- Java面试题:Java中的集合及其继承关系
关于集合的体系是每个人都应该烂熟于心的,尤其是对我们经常使用的List,Map的原理更该如此.这里我们看这张图即可: 1.List.Set.Map是否继承自Collection接口? List.Set ...
- 腾讯WeTest加入智慧零售“倍增计划”,引领微信小程序质量优化
WeTest 导读 在2019腾讯全球数字生态大会零售分论坛上,腾讯正式面向全行业合作伙伴发布倍增计划,通过咨询.培训.竞赛三步走,帮助零售商户解决前端触点融通的问题,推动微信生意大盘阶梯式上涨. 倍 ...
- python3匿名函数
当我们在传入函数时,有些时候,不需要显式地定义函数,直接传入匿名函数更方便. 在Python中,对匿名函数提供了有限支持.还是以map()函数为例,计算f(x)=x2时,除了定义一个f(x)的函数外, ...