原题链接在这里:https://leetcode.com/problems/filling-bookcase-shelves/

题目:

We have a sequence of books: the i-th book has thickness books[i][0] and height books[i][1].

We want to place these books in order onto bookcase shelves that have total width shelf_width.

We choose some of the books to place on this shelf (such that the sum of their thickness is <= shelf_width), then build another level of shelf of the bookcase so that the total height of the bookcase has increased by the maximum height of the books we just put down.  We repeat this process until there are no more books to place.

Note again that at each step of the above process, the order of the books we place is the same order as the given sequence of books.  For example, if we have an ordered list of 5 books, we might place the first and second book onto the first shelf, the third book on the second shelf, and the fourth and fifth book on the last shelf.

Return the minimum possible height that the total bookshelf can be after placing shelves in this manner.

Example 1:

Input: books = [[1,1],[2,3],[2,3],[1,1],[1,1],[1,1],[1,2]], shelf_width = 4
Output: 6
Explanation:
The sum of the heights of the 3 shelves are 1 + 3 + 2 = 6.
Notice that book number 2 does not have to be on the first shelf.

Constraints:

  • 1 <= books.length <= 1000
  • 1 <= books[i][0] <= shelf_width <= 1000
  • 1 <= books[i][1] <= 1000

题解:

Let dp[i] denotes up to index i-1, the minimum height.

For the new book i. It could be on the next row. It could be just itself or with previous books.

When book i and previous i-1, i-2 ... j, stay on the same row, its total width could not be larger than shelf_width.

And coming to j, it could be like j to i-1 is already on this row, i is just added to the same row.

For each j < i, util total width <= shelf_width, update dp[i] with dp[j-1] + max(book j, j+1, j+2, ... i). When update it uses dp[j-1], since j is already on the next row.

Time Complexity: O(n^2). n = books.length.

Space: O(n).

AC Java:

 class Solution {
public int minHeightShelves(int[][] books, int shelf_width) {
if(books == null || books.length == 0 || shelf_width <= 0){
return 0;
} int n = books.length;
int [] dp = new int[n+1]; for(int i = 1; i<=n; i++){
int w = books[i-1][0];
int h = books[i-1][1];
dp[i] = dp[i-1] + h;
for(int j = i-1; j>0 && w+books[j-1][0]<=shelf_width; j--){
h = Math.max(h, books[j-1][1]);
w += books[j-1][0];
dp[i] = Math.min(dp[i], dp[j-1]+h);
}
} return dp[n];
}
}

LeetCode 1105. Filling Bookcase Shelves的更多相关文章

  1. 【leetcode】1105. Filling Bookcase Shelves

    题目如下: We have a sequence of books: the i-th book has thickness books[i][0] and height books[i][1]. W ...

  2. leetcode1105 Filling Bookcase Shelves

    思路: dp[i]表示摆放好前i本书所需要的最小代价. 实现: class Solution { public: int minHeightShelves(vector<vector<in ...

  3. Leetcode 笔记 36 - Sudoku Solver

    题目链接:Sudoku Solver | LeetCode OJ Write a program to solve a Sudoku puzzle by filling the empty cells ...

  4. [LeetCode] Sudoku Solver 求解数独

    Write a program to solve a Sudoku puzzle by filling the empty cells. Empty cells are indicated by th ...

  5. Leetcode: Sudoku Solver

    July 19, 2015 Problem statement: Write a program to solve a Sudoku puzzle by filling the empty cells ...

  6. 【Codeforces-707D】Persistent Bookcase DFS + 线段树

    D. Persistent Bookcase Recently in school Alina has learned what are the persistent data structures: ...

  7. [LeetCode]题解(python):037-Sudoku Solver

    题目来源 https://leetcode.com/problems/sudoku-solver/ Write a program to solve a Sudoku puzzle by fillin ...

  8. Leetcode: Water and Jug Problem && Summary: GCD求法(辗转相除法 or Euclidean algorithm)

    You are given two jugs with capacities x and y litres. There is an infinite amount of water supply a ...

  9. Codeforces Round #368 (Div. 2) D. Persistent Bookcase

    Persistent Bookcase Problem Description: Recently in school Alina has learned what are the persisten ...

随机推荐

  1. PV、UV、UIP、VV、DAU、CTR指的是什么?

    PV(page view) 网站浏览量,指网页的浏览次数,用户每打开一次页面就记录一次PV,多次打开则累加. UV(unique vistor) 独立访客数,指的是某一天访问某站点的人数,以cooki ...

  2. IDEA远程调试Ambari Server

    1.配置端口 Ambari Server默认配置了服务端的debug参数,端口为5005.如果要修改端口,可以在/usr/sbin/ambari_server_main.py文件中对应地方修改,直接改 ...

  3. Spring-Cloud之Eureka注册与发现-2

    一.Eureka是Netflix开发的服务发现框架,本身是一个基于REST的服务,主要用于定位运行在AWS域中的中间层服务,以达到负载均衡和中间层服务故障转移的目的.SpringCloud将它集成在其 ...

  4. 阿里巴巴 Java 开发手册 (五) 集合处理

    1. [强制]关于 hashCode 和 equals 的处理,遵循如下规则: 1) 只要重写 equals,就必须重写 hashCode. 2) 因为 Set 存储的是不重复的对象,依据 hashC ...

  5. 微软企业库支持 MySql

    微软企业库支持 MySql   三步让企业库支持 mysql 数据库 1.创建 MySqlDatabaseData 类 using Microsoft.Practices.EnterpriseLibr ...

  6. Deployment.spec.selector.matchLables实验解释

    原文:https://cloud.tencent.com/developer/article/1394657 Deployment.spec.selector.matchLables实验解释 作者: ...

  7. python中format函数用于字符串的格式化

    python中format函数用于字符串的格式化 通过关键字 print('{名字}今天{动作}'.format(名字='陈某某',动作='拍视频'))#通过关键字 grade = {'name' : ...

  8. Oracle数据库之操作符及函数

    一.操作符: 1.分类: 算术.比较.逻辑.集合.连接: 2.算术操作符: 执行数值计算: -- 工资加1000 from emp; 3.比较操作符: -- 比较运算符(between and包头不包 ...

  9. Windows上安装ElasticSearch7的IK分词器

    首先IK分词器和ES版本一定要严格对应,下面是版本对照表 IK分词器下载地址 https://github.com/medcl/elasticsearch-analysis-ik/releases 我 ...

  10. Java 数组实例——实现棋盘落子

    五子棋.连连看.俄罗斯方块.扫雷等常见小游戏,都可以通过二维数组实现. 棋盘落子效果图: 源码: package my_package; import java.io.BufferedReader; ...