众多目标检测的知识中,都提到了mAp一值,那么这个东西到底是什么呢:
我们在评价一个目标检测算法的“好坏”程度的时候,往往采用的是pascal voc 2012的评价标准mAP。目标检测的mAP计算方式在2010年的voc上发生过变化,目前基本都是采用新的mAP评价标准,也就是说mAp的定义发生过改变,有3张图如下,要求算法找出face。蓝色框代表标签label,绿色框代表算法给出的结果pre,旁边的红色小字代表置信度。设定第一张图的检出框叫pre1,第一张的标签框叫label1。第二张、第三张同理。


首先,设置阈值为0.9,无视所有小于0.9的pre。那么检测器检出的所有框pre即TP+FP=1,并且pre1是TP,那么Precision=1/1。因为所有的label=3,所以Recall=1/3。这样就得到一组P、R值。

然后,设置阈值为0.8,无视所有小于0.8的pre。那么检测器检出的所有框pre即TP+FP=2,因为pre1是TP,pre2是FP,那么Precision=1/2=0.5。因为所有的label=3,所以Recall=1/3=0.33。这样就又得到一组P、R值。

再然后,设置阈值为0.7,无视所有小于0.7的pre。那么检测器检出的所有框pre即TP+FP=3,因为pre1是TP,pre2是FP,pre3是TP,那么Precision=2/3=0.67。因为所有的label=3,所以Recall=2/3=0.67。这样就又得到一组P、R值。

根据上面3组PR值绘制PR曲线如下。然后每个“峰值点”往左画一条线段直到与上一个峰值点的垂直线相交。这样画出来的红色线段与坐标轴围起来的面积就是AP值。在这里:

AP衡量的是对一个类检测好坏,mAP就是对多个类的检测好坏。就是简单粗暴的把所有类的AP值取平均就好了。比如有两类,类A的AP值是0.5,类B的AP值是0.2,那么mAP=(0.5+0.2)/2=0.35

目标检测的mAp的更多相关文章

  1. (转)深度学习目标检测指标mAP

    深度学习目标检测指标mAP https://github.com/rafaelpadilla/Object-Detection-Metrics 参考上面github链接中的readme,有详细描述

  2. 目标检测评价指标(mAP)

    常见指标 precision 预测出的所有目标中正确的比例 (true positives / true positives + false positives). recall 被正确定位识别的目标 ...

  3. 目标检测评价指标mAP 精准率和召回率

    首先明确几个概念,精确率,召回率,准确率 精确率precision 召回率recall 准确率accuracy 以一个实际例子入手,假设我们有100个肿瘤病人. 95个良性肿瘤病人,5个恶性肿瘤病人. ...

  4. 关于目标检测 Object detection

    NO1.目标检测 (分类+定位) 目标检测(Object Detection)是图像分类的延伸,除了分类任务,还要给定多个检测目标的坐标位置.      NO2.目标检测的发展 R-CNN是最早基于C ...

  5. 平均精度均值(mAP)——目标检测模型性能统计量

    在机器学习领域,对于大多数常见问题,通常会有多个模型可供选择.当然,每个模型会有自己的特性,并会受到不同因素的影响而表现不同. 每个模型的好坏是通过评价它在某个数据集上的性能来判断的,这个数据集通常被 ...

  6. 目标检测模型的性能评估--MAP(Mean Average Precision)

    目标检测模型中性能评估的几个重要参数有精确度,精确度和召回率.本文中我们将讨论一个常用的度量指标:均值平均精度,即MAP. 在二元分类中,精确度和召回率是一个简单直观的统计量,但是在目标检测中有所不同 ...

  7. 目标检测中常提到的IoU和mAP究竟是什么?

    看完这篇就懂了. IoU intersect over union,中文:交并比.指目标预测框和真实框的交集和并集的比例. mAP mean average precision.是指每个类别的平均查准 ...

  8. 目标检测的评价标准mAP, Precision, Recall, Accuracy

    目录 metrics 评价方法 TP , FP , TN , FN 概念 计算流程 Accuracy , Precision ,Recall Average Precision PR曲线 AP计算 A ...

  9. 评价目标检测(object detection)模型的参数:IOU,AP,mAP

    首先我们为什么要使用这些呢? 举个简单的例子,假设我们图像里面只有1个目标,但是定位出来10个框,1个正确的,9个错误的,那么你要按(识别出来的正确的目标/总的正确目标)来算,正确率100%,但是其实 ...

随机推荐

  1. 远程登录Linux系统(使用xshell),远程上传加载文件(使用Xftp)

    一.Xshell(远程登录Linux系统) 1.安装xshell 自己百度找安装包 2.连接登录 1.连接前提 需要Linux开启一个sshd的服务,监听22号端口,一般默认是开启的 查看是否开启: ...

  2. 快速排序(Quick Sort)C语言

    已知数组 src 如下: [5, 3, 7, 6, 4, 1, 0, 2, 9, 10, 8] 快速排序1 在数组 src[low, high] 中,取 src[low] 作为 关键字(key) . ...

  3. Android Studio代码错误提示无效(not available in Power Save mode)

    针对一位博友提的问题,我这边写出来,估计还是很多人会碰到这个问题,但是不知道如何解决的. 就是在设置了代码自动提示功能后,发现不生效的,如何设置代码自动提示请戳这:Android Studio如何设置 ...

  4. idea 用鼠标滚轮调整代码文字大小

    File > Settings > Keymap > Editor Actions 下,我们可以找到 “Decrease Font Size”和“Increase Font Size ...

  5. java之mybatis之helloworld

    1. MyBatis 是一款一流的支持自定义SQL.存储过程和高级映射的持久化框架. MyBatis几乎消除了所有的 JDBC 代码,也基本不需要手工去设置参数和获取检索结果. MyBatis几乎能够 ...

  6. java之hibernate之 cascade和inverse

    1.Cascade是级联动作,在many_to_one中如果使用cascade可以级联操作关联对象,如下代码可以级联保存Category对象. 在Book的映射文件设置 <many-to-one ...

  7. Java自学-类和对象 引用

    什么是Java中的引用? 引用的概念,如果一个变量的类型是 类类型,而非基本类型,那么该变量又叫做引用. 步骤 1 : 引用和指向 new Hero(); 代表创建了一个Hero对象 但是也仅仅是创建 ...

  8. Python进阶----网络通信基础 ,OSI七层协议() ,UDP和TCP的区别 , TCP/IP协议(三次握手,四次挥手)

    Python进阶----网络通信基础 ,OSI七层协议() ,UDP和TCP的区别 , TCP/IP协议(三次握手,四次挥手) 一丶CS/BS 架构 C/S: 客户端/服务器    定义:       ...

  9. 【开发笔记】- 安装zip和unzip命令

    [root@iz2zeea05by6vofxzsoxdbz elasticsearch]# unzip elasticsearch-6.2.4.zip -bash: unzip: command no ...

  10. provide inject应用及和props对比

    之前本人写过几篇element ui源码解析,其中提到provide/inject,当时只是匆匆带过,没有做深入研究,直到后来一次开发,需要实现孙组件更改父组件的值才想起来,原来这一对属性有如此大的用 ...