[LeetCode] 351. Android Unlock Patterns 安卓解锁模式
Given an Android 3x3 key lock screen and two integers m and n, where 1 ≤ m ≤ n ≤ 9, count the total number of unlock patterns of the Android lock screen, which consist of minimum of m keys and maximum n keys.
Rules for a valid pattern:
- Each pattern must connect at least m keys and at most n keys.
- All the keys must be distinct.
- If the line connecting two consecutive keys in the pattern passes through any other keys, the other keys must have previously selected in the pattern. No jumps through non selected key is allowed.
- The order of keys used matters.

Explanation:
| 1 | 2 | 3 |
| 4 | 5 | 6 |
| 7 | 8 | 9 |
Invalid move: 4 - 1 - 3 - 6
Line 1 - 3 passes through key 2 which had not been selected in the pattern.
Invalid move: 4 - 1 - 9 - 2
Line 1 - 9 passes through key 5 which had not been selected in the pattern.
Valid move: 2 - 4 - 1 - 3 - 6
Line 1 - 3 is valid because it passes through key 2, which had been selected in the pattern
Valid move: 6 - 5 - 4 - 1 - 9 - 2
Line 1 - 9 is valid because it passes through key 5, which had been selected in the pattern.
Example:
Given m = 1, n = 1, return 9.
在安卓的3*3的解锁屏幕上,给出2个整数m, n(1 ≤ m ≤ n ≤ 9),问在m到n的滑动次数之间,有多少种可能的解锁方案。给出了合理和不合理的滑动。
优化方法是,由于 1,3,7,9 是对称的,2,4,6,8也是对称的,所以只用计算其中一个,然后乘以4,5是单独的一个,所以总共求3组就可以了。
解法:DFS,建立一个二维数组jumps,用来记录两个数字键之间是否有中间键,然后再用一个一位数组visited来记录某个键是否被访问过,然后用递归来解,先对1调用递归函数,在递归函数中遍历1到9每个数字next,然后找他们之间是否有jump数字,如果next没被访问过,并且jump为0,或者jump被访问过,对next调用递归函数。数字1的模式个数算出来后,由于1,3,7,9是对称的,所以我们乘4即可,然后再对数字2调用递归函数,2,4,6,9也是对称的,再乘4,最后单独对5调用一次,然后把所有的加起来就是最终结果。参考
Java:
public class Solution {
private int patterns;
private boolean valid(boolean[] keypad, int from, int to) {
if (from==to) return false;
int i=Math.min(from, to), j=Math.max(from,to);
if ((i==1 && j==9) || (i==3 && j==7)) return keypad[5] && !keypad[to];
if ((i==1 || i==4 || i==7) && i+2==j) return keypad[i+1] && !keypad[to];
if (i<=3 && i+6==j) return keypad[i+3] && !keypad[to];
return !keypad[to];
}
private void find(boolean[] keypad, int from, int step, int m, int n) {
if (step == n) {
patterns ++;
return;
}
if (step >= m) patterns ++;
for(int i=1; i<=9; i++) {
if (valid(keypad, from, i)) {
keypad[i] = true;
find(keypad, i, step+1, m, n);
keypad[i] = false;
}
}
}
public int numberOfPatterns(int m, int n) {
boolean[] keypad = new boolean[10];
for(int i=1; i<=9; i++) {
keypad[i] = true;
find(keypad, i, 1, m, n);
keypad[i] = false;
}
return patterns;
}
}
Java:
public class Solution {
// cur: the current position
// remain: the steps remaining
int DFS(boolean vis[], int[][] skip, int cur, int remain) {
if(remain < 0) return 0;
if(remain == 0) return 1;
vis[cur] = true;
int rst = 0;
for(int i = 1; i <= 9; ++i) {
// If vis[i] is not visited and (two numbers are adjacent or skip number is already visited)
if(!vis[i] && (skip[cur][i] == 0 || (vis[skip[cur][i]]))) {
rst += DFS(vis, skip, i, remain - 1);
}
}
vis[cur] = false;
return rst;
}
public int numberOfPatterns(int m, int n) {
// Skip array represents number to skip between two pairs
int skip[][] = new int[10][10];
skip[1][3] = skip[3][1] = 2;
skip[1][7] = skip[7][1] = 4;
skip[3][9] = skip[9][3] = 6;
skip[7][9] = skip[9][7] = 8;
skip[1][9] = skip[9][1] = skip[2][8] = skip[8][2] = skip[3][7] = skip[7][3] = skip[4][6] = skip[6][4] = 5;
boolean vis[] = new boolean[10];
int rst = 0;
// DFS search each length from m to n
for(int i = m; i <= n; ++i) {
rst += DFS(vis, skip, 1, i - 1) * 4; // 1, 3, 7, 9 are symmetric
rst += DFS(vis, skip, 2, i - 1) * 4; // 2, 4, 6, 8 are symmetric
rst += DFS(vis, skip, 5, i - 1); // 5
}
return rst;
}
}
Python:
# Time: O(9!)
# Space: O(9)
# Backtracking solution. (TLE)
class Solution_TLE(object):
def numberOfPatterns(self, m, n):
"""
:type m: int
:type n: int
:rtype: int
"""
def merge(used, i):
return used | (1 << i) def contain(used, i):
return bool(used & (1 << i)) def convert(i, j):
return 3 * i + j def numberOfPatternsHelper(m, n, level, used, i):
number = 0
if level > n:
return number if m <= level <= n:
number += 1 x1, y1 = divmod(i, 3)
for j in xrange(9):
if contain(used, j):
continue x2, y2 = divmod(j, 3)
if ((x1 == x2 and abs(y1 - y2) == 2) or
(y1 == y2 and abs(x1 - x2) == 2) or
(abs(x1 - x2) == 2 and abs(y1 - y2) == 2)) and \
not contain(used,
convert((x1 + x2) // 2, (y1 + y2) // 2)):
continue number += numberOfPatternsHelper(m, n, level + 1, merge(used, j), j) return number number = 0
# 1, 3, 7, 9
number += 4 * numberOfPatternsHelper(m, n, 1, merge(0, 0), 0)
# 2, 4, 6, 8
number += 4 * numberOfPatternsHelper(m, n, 1, merge(0, 1), 1)
# 5
number += numberOfPatternsHelper(m, n, 1, merge(0, 4), 4)
return number
Python:
# Time: O(9^2 * 2^9)
# Space: O(9 * 2^9)
# DP solution.
class Solution2(object):
def numberOfPatterns(self, m, n):
"""
:type m: int
:type n: int
:rtype: int
"""
def merge(used, i):
return used | (1 << i) def number_of_keys(i):
number = 0
while i > 0:
i &= i - 1
number += 1
return number def exclude(used, i):
return used & ~(1 << i) def contain(used, i):
return bool(used & (1 << i)) def convert(i, j):
return 3 * i + j # dp[i][j]: i is the set of the numbers in binary representation,
# d[i][j] is the number of ways ending with the number j.
dp = [[0] * 9 for _ in xrange(1 << 9)]
for i in xrange(9):
dp[merge(0, i)][i] = 1 res = 0
for used in xrange(len(dp)):
number = number_of_keys(used)
if number > n:
continue for i in xrange(9):
if not contain(used, i):
continue x1, y1 = divmod(i, 3)
for j in xrange(9):
if i == j or not contain(used, j):
continue x2, y2 = divmod(j, 3)
if ((x1 == x2 and abs(y1 - y2) == 2) or
(y1 == y2 and abs(x1 - x2) == 2) or
(abs(x1 - x2) == 2 and abs(y1 - y2) == 2)) and \
not contain(used,
convert((x1 + x2) // 2, (y1 + y2) // 2)):
continue dp[used][i] += dp[exclude(used, i)][j] if m <= number <= n:
res += dp[used][i] return res
Python:
# DP solution.
class Solution(object):
def numberOfPatterns(self, m, n):
"""
:type m: int
:type n: int
:rtype: int
"""
def merge(used, i):
return used | (1 << i) def number_of_keys(i):
number = 0
while i > 0:
i &= i - 1
number += 1
return number def contain(used, i):
return bool(used & (1 << i)) def convert(i, j):
return 3 * i + j # dp[i][j]: i is the set of the numbers in binary representation,
# dp[i][j] is the number of ways ending with the number j.
dp = [[0] * 9 for _ in xrange(1 << 9)]
for i in xrange(9):
dp[merge(0, i)][i] = 1 res = 0
for used in xrange(len(dp)):
number = number_of_keys(used)
if number > n:
continue for i in xrange(9):
if not contain(used, i):
continue if m <= number <= n:
res += dp[used][i] x1, y1 = divmod(i, 3)
for j in xrange(9):
if contain(used, j):
continue x2, y2 = divmod(j, 3)
if ((x1 == x2 and abs(y1 - y2) == 2) or
(y1 == y2 and abs(x1 - x2) == 2) or
(abs(x1 - x2) == 2 and abs(y1 - y2) == 2)) and \
not contain(used,
convert((x1 + x2) // 2, (y1 + y2) // 2)):
continue dp[merge(used, j)][j] += dp[used][i] return res
C++:
// DP solution.
class Solution {
public:
int numberOfPatterns(int m, int n) {
// dp[i][j]: i is the set of the numbers in binary representation,
// dp[i][j] is the number of ways ending with the number j.
vector<vector<int>> dp(1 << 9 , vector<int>(9, 0));
for (int i = 0; i < 9; ++i) {
dp[merge(0, i)][i] = 1;
} int res = 0;
for (int used = 0; used < dp.size(); ++used) {
const auto number = number_of_keys(used);
if (number > n) {
continue;
}
for (int i = 0; i < 9; ++i) {
if (!contain(used, i)) {
continue;
}
if (m <= number && number <= n) {
res += dp[used][i];
} const auto x1 = i / 3;
const auto y1 = i % 3;
for (int j = 0; j < 9; ++j) {
if (contain(used, j)) {
continue;
}
const auto x2 = j / 3;
const auto y2 = j % 3;
if (((x1 == x2 && abs(y1 - y2) == 2) ||
(y1 == y2 && abs(x1 - x2) == 2) ||
(abs(x1 - x2) == 2 && abs(y1 - y2) == 2)) &&
!contain(used, convert((x1 + x2) / 2, (y1 + y2) / 2))) {
continue;
}
dp[merge(used, j)][j] += dp[used][i];
}
}
} return res;
} private:
inline int merge(int i, int j) {
return i | (1 << j);
} inline int number_of_keys(int i) {
int number = 0;
for (; i; i &= i - 1) {
++number;
}
return number;
} inline bool contain(int i, int j) {
return i & (1 << j);
} inline int convert(int i, int j) {
return 3 * i + j;
}
};
C++:
// Time: O(9^2 * 2^9)
// Space: O(9 * 2^9)
// DP solution.
class Solution2 {
public:
int numberOfPatterns(int m, int n) {
// dp[i][j]: i is the set of the numbers in binary representation,
// dp[i][j] is the number of ways ending with the number j.
vector<vector<int>> dp(1 << 9 , vector<int>(9, 0));
for (int i = 0; i < 9; ++i) {
dp[merge(0, i)][i] = 1;
} int res = 0;
for (int used = 0; used < dp.size(); ++used) {
const auto number = number_of_keys(used);
if (number > n) {
continue;
}
for (int i = 0; i < 9; ++i) {
if (!contain(used, i)) {
continue;
} const auto x1 = i / 3;
const auto y1 = i % 3;
for (int j = 0; j < 9; ++j) {
if (i == j || !contain(used, j)) {
continue;
}
const auto x2 = j / 3;
const auto y2 = j % 3;
if (((x1 == x2 && abs(y1 - y2) == 2) ||
(y1 == y2 && abs(x1 - x2) == 2) ||
(abs(x1 - x2) == 2 && abs(y1 - y2) == 2)) &&
!contain(used, convert((x1 + x2) / 2, (y1 + y2) / 2))) {
continue;
}
dp[used][i] += dp[exclude(used, i)][j];
}
if (m <= number && number <= n) {
res += dp[used][i];
}
}
} return res;
} private:
inline int merge(int i, int j) {
return i | (1 << j);
} inline int number_of_keys(int i) {
int number = 0;
for (; i; i &= i - 1) {
++number;
}
return number;
} inline bool contain(int i, int j) {
return i & (1 << j);
} inline int exclude(int i, int j) {
return i & ~(1 << j);
} inline int convert(int i, int j) {
return 3 * i + j;
}
};
C++:
// Time: O(9!)
// Space: O(9)
// Backtracking solution.
class Solution3 {
public:
int numberOfPatterns(int m, int n) {
int number = 0;
// 1, 3, 5, 7
number += 4 * numberOfPatternsHelper(m, n, 1, merge(0, 0), 0);
// 2, 4, 6, 8
number += 4 * numberOfPatternsHelper(m, n, 1, merge(0, 1), 1);
// 5
number += numberOfPatternsHelper(m, n, 1, merge(0, 4), 4);
return number;
} private:
int numberOfPatternsHelper(int m, int n, int level, int used, int i) {
int number = 0;
if (level > n) {
return number;
}
if (level >= m) {
++number;
} const auto x1 = i / 3;
const auto y1 = i % 3;
for (int j = 0; j < 9; ++j) {
if (contain(used, j)) {
continue;
}
const auto x2 = j / 3;
const auto y2 = j % 3;
if (((x1 == x2 && abs(y1 - y2) == 2) ||
(y1 == y2 && abs(x1 - x2) == 2) ||
(abs(x1 - x2) == 2 && abs(y1 - y2) == 2)) &&
!contain(used, convert((x1 + x2) / 2, (y1 + y2) / 2))) {
continue;
}
number += numberOfPatternsHelper(m, n, level + 1, merge(used, j), j);
} return number;
} private:
inline int merge(int i, int j) {
return i | (1 << j);
} inline bool contain(int i, int j) {
return i & (1 << j);
} inline int convert(int i, int j) {
return 3 * i + j;
}
};
C++:
class Solution {
public:
int DFS(int m, int n, int len, int num)
{
int cnt = 0;
if(len >= m) cnt++;
if(++len > n) return cnt;
visited[num] = true;
for(int i = 1; i<= 9; i++)
if(!visited[i] && visited[hash[num][i]])
cnt += DFS(m, n, len, i);
visited[num] = false;
return cnt;
}
int numberOfPatterns(int m, int n) {
if(m < 1 || n < 1) return 0;
visited.resize(10, false);
visited[0] = true;
hash.resize(10, vector<int>(10, 0));
hash[1][3] = hash[3][1] = 2;
hash[1][7] = hash[7][1] = 4;
hash[3][9] = hash[9][3] = 6;
hash[7][9] = hash[9][7] = 8;
hash[2][8] = hash[8][2] = hash[4][6] = hash[6][4] = 5;
hash[1][9] = hash[9][1] = hash[3][7] = hash[7][3] = 5;
return DFS(m, n, 1, 1)*4 + DFS(m, n, 1, 2)*4 + DFS(m, n, 1, 5);
}
private:
vector<bool> visited;
vector<vector<int>> hash;
};
C++:
class Solution {
public:
int numberOfPatterns(int m, int n) {
return count(m, n, 0, 1, 1);
}
int count(int m, int n, int used, int i1, int j1) {
if (n == 0) return 1;
int res = (m <= 0);
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
// used2 check middle point has been used
int I = i1+i, J = j1+j, used2 = used | (1 << (i*3+j));
// used2 > used: add a new unused integer
// I%2 == 1: i1 odd i even or reverse
// used2 & (1 << I/2*3+J/2): mid point has been used
if (used2 > used && (I%2 || J%2 || used2 & (1 << I/2*3+J/2))) {
res += count(m-1, n-1, used2, i, j);
}
}
}
return res;
}
};
All LeetCode Questions List 题目汇总
[LeetCode] 351. Android Unlock Patterns 安卓解锁模式的更多相关文章
- [LeetCode] Android Unlock Patterns 安卓解锁模式
Given an Android 3x3 key lock screen and two integers m and n, where 1 ≤ m ≤ n ≤ 9, count the total ...
- LC 351. Android Unlock Patterns
Given an Android 3x3 key lock screen and two integers m and n, where 1 ≤ m ≤ n ≤ 9, count the total ...
- 351. Android Unlock Patterns
这个题我真是做得想打人了卧槽. 题目不难,就是算组合,但是因为是3乘3的键盘,所以只需要从1和2分别开始DFS,结果乘以4,再加上5开始的DFS就行了. 问题是这个傻逼题目的设定是,从1到8不需要经过 ...
- [Swift]LeetCode351. 安卓解锁模式 $ Android Unlock Patterns
Given an Android 3x3 key lock screen and two integers m and n, where 1 ≤ m ≤ n ≤ 9, count the total ...
- Leetcode: Android Unlock Patterns
Given an Android 3x3 key ≤ m ≤ n ≤ , count the total number of unlock patterns of the Android lock s ...
- Android Unlock Patterns
Given an Android 3x3 key lock screen and two integers m and n, where 1 ≤ m ≤ n ≤ 9, count the total ...
- 白底黑字!Android浅色状态栏黑色字体模式(另)
小彬什么都想做任重致远 关注 2016.06.30 10:16* 字数 489 阅读 3234评论 3喜欢 12 前言 由于该死不死的设计湿,设计了一套白色状态栏的UI.当然在iOS上可以实现自适应, ...
- Eclipse+ADT+Android SDK 搭建安卓开发环境
Eclipse+ADT+Android SDK 搭建安卓开发环境 要求 必备知识 windows 7 基本操作. 运行环境 windows 7(64位); eclipse-jee-luna-SR2 ...
- Android中的创建型模式总结
共5种,单例模式.工厂方法模式.抽象工厂模式.建造者模式.原型模式 单例模式 定义:确保某一个类的实例只有一个,而且向其他类提供这个实例. 单例模式的使用场景:某个类的创建需要消耗大量资源,new一个 ...
随机推荐
- HDU4548美素数——筛选法与空间换时间
对于数论的学习比较的碎片化,所以开了一篇随笔来记录一下学习中遇到的一些坑,主要通过题目来讲解 本题围绕:素数筛选法与空间换时间 HDU4548美素数 题目描述 小明对数的研究比较热爱,一谈到数,脑子里 ...
- OI歌曲汇总
在学习的间隙,我们广大的OIer创作了许多广为人知的歌曲 这里来个总结 (持续更新ing......) Lemon OI 葛平 Lemon OI chen_zhe Lemon OI kkksc03 膜 ...
- Eclipse 打包运行maven项目
https://www.cnblogs.com/tangshengwei/p/6341462.html
- 集成omnibus-ctl 开发一个专业的软件包管理工具
前边有转发过来自chef 团队的一篇omnibus-ctl 介绍文章,以下尝试进行项目试用 就是简单的集成,没有多少复杂的操作 环境准备 ruby ruby 使用2.6.3 使用 rbenv 安装,可 ...
- 开源项目 02 HttpLib
using JumpKick.HttpLib; using Newtonsoft.Json; using System; using System.Collections.Generic; using ...
- Nginx 和 PHP 和 mysql扩展的安装
1.nginx 安装 2.php的安装 3.php的扩展mysql的安装
- 【loj2983】【WC2019】数树
题目 两颗\(n\)个点的树T1和T2,有\(y\)种颜色; 现在给每个点染色,要求公共边端点的颜色相同,求: 1.op=0 , T1和T2都确定,求合法染色方案数: 2.op=1 , T1确 ...
- git dev分支合并线上master
1.本地dev新建/切换本地master 新建 git checkout -b master 切换 git checkout master 2.本地dev与本地master合并 git merge ...
- 【洛谷】P5024 保卫王国 (倍增)
前言 传送门 很多人写了题解了,我就懒得写了,推荐一篇博客 那就分享一下我的理解吧(说得好像有人看一样 对于每个点都只有选与不选两种情况,所以直接用倍增预处理出来两种情况的子树之内,子树之外的最值,最 ...
- RESTFull开发风格