Given an Android 3x3 key lock screen and two integers m and n, where 1 ≤ m ≤ n ≤ 9, count the total number of unlock patterns of the Android lock screen, which consist of minimum of m keys and maximum n keys.

Rules for a valid pattern:

  1. Each pattern must connect at least m keys and at most n keys.
  2. All the keys must be distinct.
  3. If the line connecting two consecutive keys in the pattern passes through any other keys, the other keys must have previously selected in the pattern. No jumps through non selected key is allowed.
  4. The order of keys used matters.

Explanation:

| 1 | 2 | 3 |
| 4 | 5 | 6 |
| 7 | 8 | 9 |

Invalid move: 4 - 1 - 3 - 6 
Line 1 - 3 passes through key 2 which had not been selected in the pattern.

Invalid move: 4 - 1 - 9 - 2
Line 1 - 9 passes through key 5 which had not been selected in the pattern.

Valid move: 2 - 4 - 1 - 3 - 6
Line 1 - 3 is valid because it passes through key 2, which had been selected in the pattern

Valid move: 6 - 5 - 4 - 1 - 9 - 2
Line 1 - 9 is valid because it passes through key 5, which had been selected in the pattern.

Example:
Given m = 1, n = 1, return 9.

在安卓的3*3的解锁屏幕上,给出2个整数m, n(1 ≤ m ≤ n ≤ 9),问在m到n的滑动次数之间,有多少种可能的解锁方案。给出了合理和不合理的滑动。

优化方法是,由于 1,3,7,9 是对称的,2,4,6,8也是对称的,所以只用计算其中一个,然后乘以4,5是单独的一个,所以总共求3组就可以了。

解法:DFS,建立一个二维数组jumps,用来记录两个数字键之间是否有中间键,然后再用一个一位数组visited来记录某个键是否被访问过,然后用递归来解,先对1调用递归函数,在递归函数中遍历1到9每个数字next,然后找他们之间是否有jump数字,如果next没被访问过,并且jump为0,或者jump被访问过,对next调用递归函数。数字1的模式个数算出来后,由于1,3,7,9是对称的,所以我们乘4即可,然后再对数字2调用递归函数,2,4,6,9也是对称的,再乘4,最后单独对5调用一次,然后把所有的加起来就是最终结果。参考

Java:

public class Solution {
private int patterns;
private boolean valid(boolean[] keypad, int from, int to) {
if (from==to) return false;
int i=Math.min(from, to), j=Math.max(from,to);
if ((i==1 && j==9) || (i==3 && j==7)) return keypad[5] && !keypad[to];
if ((i==1 || i==4 || i==7) && i+2==j) return keypad[i+1] && !keypad[to];
if (i<=3 && i+6==j) return keypad[i+3] && !keypad[to];
return !keypad[to];
}
private void find(boolean[] keypad, int from, int step, int m, int n) {
if (step == n) {
patterns ++;
return;
}
if (step >= m) patterns ++;
for(int i=1; i<=9; i++) {
if (valid(keypad, from, i)) {
keypad[i] = true;
find(keypad, i, step+1, m, n);
keypad[i] = false;
}
}
}
public int numberOfPatterns(int m, int n) {
boolean[] keypad = new boolean[10];
for(int i=1; i<=9; i++) {
keypad[i] = true;
find(keypad, i, 1, m, n);
keypad[i] = false;
}
return patterns;
}
}

Java:

public class Solution {
// cur: the current position
// remain: the steps remaining
int DFS(boolean vis[], int[][] skip, int cur, int remain) {
if(remain < 0) return 0;
if(remain == 0) return 1;
vis[cur] = true;
int rst = 0;
for(int i = 1; i <= 9; ++i) {
// If vis[i] is not visited and (two numbers are adjacent or skip number is already visited)
if(!vis[i] && (skip[cur][i] == 0 || (vis[skip[cur][i]]))) {
rst += DFS(vis, skip, i, remain - 1);
}
}
vis[cur] = false;
return rst;
} public int numberOfPatterns(int m, int n) {
// Skip array represents number to skip between two pairs
int skip[][] = new int[10][10];
skip[1][3] = skip[3][1] = 2;
skip[1][7] = skip[7][1] = 4;
skip[3][9] = skip[9][3] = 6;
skip[7][9] = skip[9][7] = 8;
skip[1][9] = skip[9][1] = skip[2][8] = skip[8][2] = skip[3][7] = skip[7][3] = skip[4][6] = skip[6][4] = 5;
boolean vis[] = new boolean[10];
int rst = 0;
// DFS search each length from m to n
for(int i = m; i <= n; ++i) {
rst += DFS(vis, skip, 1, i - 1) * 4; // 1, 3, 7, 9 are symmetric
rst += DFS(vis, skip, 2, i - 1) * 4; // 2, 4, 6, 8 are symmetric
rst += DFS(vis, skip, 5, i - 1); // 5
}
return rst;
}
}  

Python:

# Time:  O(9!)
# Space: O(9)
# Backtracking solution. (TLE)
class Solution_TLE(object):
def numberOfPatterns(self, m, n):
"""
:type m: int
:type n: int
:rtype: int
"""
def merge(used, i):
return used | (1 << i) def contain(used, i):
return bool(used & (1 << i)) def convert(i, j):
return 3 * i + j def numberOfPatternsHelper(m, n, level, used, i):
number = 0
if level > n:
return number if m <= level <= n:
number += 1 x1, y1 = divmod(i, 3)
for j in xrange(9):
if contain(used, j):
continue x2, y2 = divmod(j, 3)
if ((x1 == x2 and abs(y1 - y2) == 2) or
(y1 == y2 and abs(x1 - x2) == 2) or
(abs(x1 - x2) == 2 and abs(y1 - y2) == 2)) and \
not contain(used,
convert((x1 + x2) // 2, (y1 + y2) // 2)):
continue number += numberOfPatternsHelper(m, n, level + 1, merge(used, j), j) return number number = 0
# 1, 3, 7, 9
number += 4 * numberOfPatternsHelper(m, n, 1, merge(0, 0), 0)
# 2, 4, 6, 8
number += 4 * numberOfPatternsHelper(m, n, 1, merge(0, 1), 1)
# 5
number += numberOfPatternsHelper(m, n, 1, merge(0, 4), 4)
return number

Python:

# Time:  O(9^2 * 2^9)
# Space: O(9 * 2^9)
# DP solution.
class Solution2(object):
def numberOfPatterns(self, m, n):
"""
:type m: int
:type n: int
:rtype: int
"""
def merge(used, i):
return used | (1 << i) def number_of_keys(i):
number = 0
while i > 0:
i &= i - 1
number += 1
return number def exclude(used, i):
return used & ~(1 << i) def contain(used, i):
return bool(used & (1 << i)) def convert(i, j):
return 3 * i + j # dp[i][j]: i is the set of the numbers in binary representation,
# d[i][j] is the number of ways ending with the number j.
dp = [[0] * 9 for _ in xrange(1 << 9)]
for i in xrange(9):
dp[merge(0, i)][i] = 1 res = 0
for used in xrange(len(dp)):
number = number_of_keys(used)
if number > n:
continue for i in xrange(9):
if not contain(used, i):
continue x1, y1 = divmod(i, 3)
for j in xrange(9):
if i == j or not contain(used, j):
continue x2, y2 = divmod(j, 3)
if ((x1 == x2 and abs(y1 - y2) == 2) or
(y1 == y2 and abs(x1 - x2) == 2) or
(abs(x1 - x2) == 2 and abs(y1 - y2) == 2)) and \
not contain(used,
convert((x1 + x2) // 2, (y1 + y2) // 2)):
continue dp[used][i] += dp[exclude(used, i)][j] if m <= number <= n:
res += dp[used][i] return res

Python:  

# DP solution.
class Solution(object):
def numberOfPatterns(self, m, n):
"""
:type m: int
:type n: int
:rtype: int
"""
def merge(used, i):
return used | (1 << i) def number_of_keys(i):
number = 0
while i > 0:
i &= i - 1
number += 1
return number def contain(used, i):
return bool(used & (1 << i)) def convert(i, j):
return 3 * i + j # dp[i][j]: i is the set of the numbers in binary representation,
# dp[i][j] is the number of ways ending with the number j.
dp = [[0] * 9 for _ in xrange(1 << 9)]
for i in xrange(9):
dp[merge(0, i)][i] = 1 res = 0
for used in xrange(len(dp)):
number = number_of_keys(used)
if number > n:
continue for i in xrange(9):
if not contain(used, i):
continue if m <= number <= n:
res += dp[used][i] x1, y1 = divmod(i, 3)
for j in xrange(9):
if contain(used, j):
continue x2, y2 = divmod(j, 3)
if ((x1 == x2 and abs(y1 - y2) == 2) or
(y1 == y2 and abs(x1 - x2) == 2) or
(abs(x1 - x2) == 2 and abs(y1 - y2) == 2)) and \
not contain(used,
convert((x1 + x2) // 2, (y1 + y2) // 2)):
continue dp[merge(used, j)][j] += dp[used][i] return res

C++:

// DP solution.
class Solution {
public:
int numberOfPatterns(int m, int n) {
// dp[i][j]: i is the set of the numbers in binary representation,
// dp[i][j] is the number of ways ending with the number j.
vector<vector<int>> dp(1 << 9 , vector<int>(9, 0));
for (int i = 0; i < 9; ++i) {
dp[merge(0, i)][i] = 1;
} int res = 0;
for (int used = 0; used < dp.size(); ++used) {
const auto number = number_of_keys(used);
if (number > n) {
continue;
}
for (int i = 0; i < 9; ++i) {
if (!contain(used, i)) {
continue;
}
if (m <= number && number <= n) {
res += dp[used][i];
} const auto x1 = i / 3;
const auto y1 = i % 3;
for (int j = 0; j < 9; ++j) {
if (contain(used, j)) {
continue;
}
const auto x2 = j / 3;
const auto y2 = j % 3;
if (((x1 == x2 && abs(y1 - y2) == 2) ||
(y1 == y2 && abs(x1 - x2) == 2) ||
(abs(x1 - x2) == 2 && abs(y1 - y2) == 2)) &&
!contain(used, convert((x1 + x2) / 2, (y1 + y2) / 2))) {
continue;
}
dp[merge(used, j)][j] += dp[used][i];
}
}
} return res;
} private:
inline int merge(int i, int j) {
return i | (1 << j);
} inline int number_of_keys(int i) {
int number = 0;
for (; i; i &= i - 1) {
++number;
}
return number;
} inline bool contain(int i, int j) {
return i & (1 << j);
} inline int convert(int i, int j) {
return 3 * i + j;
}
};

C++:

// Time:  O(9^2 * 2^9)
// Space: O(9 * 2^9)
// DP solution.
class Solution2 {
public:
int numberOfPatterns(int m, int n) {
// dp[i][j]: i is the set of the numbers in binary representation,
// dp[i][j] is the number of ways ending with the number j.
vector<vector<int>> dp(1 << 9 , vector<int>(9, 0));
for (int i = 0; i < 9; ++i) {
dp[merge(0, i)][i] = 1;
} int res = 0;
for (int used = 0; used < dp.size(); ++used) {
const auto number = number_of_keys(used);
if (number > n) {
continue;
}
for (int i = 0; i < 9; ++i) {
if (!contain(used, i)) {
continue;
} const auto x1 = i / 3;
const auto y1 = i % 3;
for (int j = 0; j < 9; ++j) {
if (i == j || !contain(used, j)) {
continue;
}
const auto x2 = j / 3;
const auto y2 = j % 3;
if (((x1 == x2 && abs(y1 - y2) == 2) ||
(y1 == y2 && abs(x1 - x2) == 2) ||
(abs(x1 - x2) == 2 && abs(y1 - y2) == 2)) &&
!contain(used, convert((x1 + x2) / 2, (y1 + y2) / 2))) {
continue;
}
dp[used][i] += dp[exclude(used, i)][j];
}
if (m <= number && number <= n) {
res += dp[used][i];
}
}
} return res;
} private:
inline int merge(int i, int j) {
return i | (1 << j);
} inline int number_of_keys(int i) {
int number = 0;
for (; i; i &= i - 1) {
++number;
}
return number;
} inline bool contain(int i, int j) {
return i & (1 << j);
} inline int exclude(int i, int j) {
return i & ~(1 << j);
} inline int convert(int i, int j) {
return 3 * i + j;
}
};

C++:

// Time:  O(9!)
// Space: O(9)
// Backtracking solution.
class Solution3 {
public:
int numberOfPatterns(int m, int n) {
int number = 0;
// 1, 3, 5, 7
number += 4 * numberOfPatternsHelper(m, n, 1, merge(0, 0), 0);
// 2, 4, 6, 8
number += 4 * numberOfPatternsHelper(m, n, 1, merge(0, 1), 1);
// 5
number += numberOfPatternsHelper(m, n, 1, merge(0, 4), 4);
return number;
} private:
int numberOfPatternsHelper(int m, int n, int level, int used, int i) {
int number = 0;
if (level > n) {
return number;
}
if (level >= m) {
++number;
} const auto x1 = i / 3;
const auto y1 = i % 3;
for (int j = 0; j < 9; ++j) {
if (contain(used, j)) {
continue;
}
const auto x2 = j / 3;
const auto y2 = j % 3;
if (((x1 == x2 && abs(y1 - y2) == 2) ||
(y1 == y2 && abs(x1 - x2) == 2) ||
(abs(x1 - x2) == 2 && abs(y1 - y2) == 2)) &&
!contain(used, convert((x1 + x2) / 2, (y1 + y2) / 2))) {
continue;
}
number += numberOfPatternsHelper(m, n, level + 1, merge(used, j), j);
} return number;
} private:
inline int merge(int i, int j) {
return i | (1 << j);
} inline bool contain(int i, int j) {
return i & (1 << j);
} inline int convert(int i, int j) {
return 3 * i + j;
}
};

C++:

class Solution {
public:
int DFS(int m, int n, int len, int num)
{
int cnt = 0;
if(len >= m) cnt++;
if(++len > n) return cnt;
visited[num] = true;
for(int i = 1; i<= 9; i++)
if(!visited[i] && visited[hash[num][i]])
cnt += DFS(m, n, len, i);
visited[num] = false;
return cnt;
} int numberOfPatterns(int m, int n) {
if(m < 1 || n < 1) return 0;
visited.resize(10, false);
visited[0] = true;
hash.resize(10, vector<int>(10, 0));
hash[1][3] = hash[3][1] = 2;
hash[1][7] = hash[7][1] = 4;
hash[3][9] = hash[9][3] = 6;
hash[7][9] = hash[9][7] = 8;
hash[2][8] = hash[8][2] = hash[4][6] = hash[6][4] = 5;
hash[1][9] = hash[9][1] = hash[3][7] = hash[7][3] = 5;
return DFS(m, n, 1, 1)*4 + DFS(m, n, 1, 2)*4 + DFS(m, n, 1, 5);
}
private:
vector<bool> visited;
vector<vector<int>> hash;
};

C++:

class Solution {
public:
int numberOfPatterns(int m, int n) {
return count(m, n, 0, 1, 1);
}
int count(int m, int n, int used, int i1, int j1) {
if (n == 0) return 1;
int res = (m <= 0);
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
// used2 check middle point has been used
int I = i1+i, J = j1+j, used2 = used | (1 << (i*3+j));
// used2 > used: add a new unused integer
// I%2 == 1: i1 odd i even or reverse
// used2 & (1 << I/2*3+J/2): mid point has been used
if (used2 > used && (I%2 || J%2 || used2 & (1 << I/2*3+J/2))) {
res += count(m-1, n-1, used2, i, j);
}
}
}
return res;
}
};

  

 

All LeetCode Questions List 题目汇总

[LeetCode] 351. Android Unlock Patterns 安卓解锁模式的更多相关文章

  1. [LeetCode] Android Unlock Patterns 安卓解锁模式

    Given an Android 3x3 key lock screen and two integers m and n, where 1 ≤ m ≤ n ≤ 9, count the total ...

  2. LC 351. Android Unlock Patterns

    Given an Android 3x3 key lock screen and two integers m and n, where 1 ≤ m ≤ n ≤ 9, count the total ...

  3. 351. Android Unlock Patterns

    这个题我真是做得想打人了卧槽. 题目不难,就是算组合,但是因为是3乘3的键盘,所以只需要从1和2分别开始DFS,结果乘以4,再加上5开始的DFS就行了. 问题是这个傻逼题目的设定是,从1到8不需要经过 ...

  4. [Swift]LeetCode351. 安卓解锁模式 $ Android Unlock Patterns

    Given an Android 3x3 key lock screen and two integers m and n, where 1 ≤ m ≤ n ≤ 9, count the total ...

  5. Leetcode: Android Unlock Patterns

    Given an Android 3x3 key ≤ m ≤ n ≤ , count the total number of unlock patterns of the Android lock s ...

  6. Android Unlock Patterns

    Given an Android 3x3 key lock screen and two integers m and n, where 1 ≤ m ≤ n ≤ 9, count the total ...

  7. 白底黑字!Android浅色状态栏黑色字体模式(另)

    小彬什么都想做任重致远 关注 2016.06.30 10:16* 字数 489 阅读 3234评论 3喜欢 12 前言 由于该死不死的设计湿,设计了一套白色状态栏的UI.当然在iOS上可以实现自适应, ...

  8. Eclipse+ADT+Android SDK 搭建安卓开发环境

    Eclipse+ADT+Android SDK 搭建安卓开发环境   要求 必备知识 windows 7 基本操作. 运行环境 windows 7(64位); eclipse-jee-luna-SR2 ...

  9. Android中的创建型模式总结

    共5种,单例模式.工厂方法模式.抽象工厂模式.建造者模式.原型模式 单例模式 定义:确保某一个类的实例只有一个,而且向其他类提供这个实例. 单例模式的使用场景:某个类的创建需要消耗大量资源,new一个 ...

随机推荐

  1. 【转】什么时候 i = i + 1 并不等于 i += 1?

    增强型赋值语句是经常被使用到的,因为从各种学习渠道中,我们能够得知 i += 1 的效率往往要比 i = i + 1 更高一些(这里以 += 为例,实际上增强型赋值语句不仅限于此). 所以我们会乐此不 ...

  2. Spring Cloud Ribbon负载均衡(快速搭建)

    Spring Cloud Ribbon 是一个基于HTTP和TCP的客户端负载均衡工具,它基于Netflix Ribbon实现.通过 Spring Cloud 的封装, 可以让我们轻松地将面向服务的 ...

  3. spring的面试题

    什么是spring? spring是一个开源框架,为简化企业级应用开发而生.Spring可以是使简单的javaBean实现以前只有EJB才能实现的功能.Spring是一个IOC和AOP容器框架. Sp ...

  4. 关于jsp页面中name=“username”与name=“username ”的区别

    我们可以仔细的观察一下,上面的name属性都等于username,但是确实存在大同小异的差距,为什么这样说呢,因为,第二个比第一个多了一个空格,在jsp中,我曾经遇到过一个情况就是两个单选按钮用同一个 ...

  5. git工具免密拉取、推送

    很苦恼每次都要配置明文密码才能正常工作 其实也可以配置成非明文 打开控制面板 →用户账号 管理 Windows凭证 对应修改响应网址即可  

  6. VS2010中使用boost正则表达式库

    1.下载boost库.http://www.boost.org/ 我下载的是boost_1_51_0版本.放在D:\opensource\boost_1_51_0. 2.编译boost库.     执 ...

  7. WinDbg常用命令系列---显示数据类型dt/dtx

    dt (Display Type) dt命令显示有关局部变量.全局变量或数据类型的信息.这可以显示有关简单数据类型以及结构和联合的信息. 用户模式下: dt [-DisplayOpts] [-Sear ...

  8. php7 configure: error: Cannot find OpenSSL's <evp.h> 问题解决

    开始以为是没有安装openssl, openssl-devel,安装后发现还是提示这个错误,搜索了一下evp.h,这个文件也存在.GOOGLE 了一下,在stackoverflow,找到了答案,原来是 ...

  9. 2、kafka集群搭建

    以三台为例,先安装一台,然后分发: 一.准备 1.下载 http://kafka.apache.org kafka_2.11-2.0.1.tgz 前面的数字2.11是scala的版本,2.0.1是ka ...

  10. e3s10 网络管理

    1. host上设置 iptables -t nat -A POSTROUTING -o eno1 -j MASQUERADE # https://www.unixtutorial.org/how-t ...